Bianchi, Massimo.

Fourteenth Marcel Grossmann Meeting, The. - 1 online resource (4781 pages)

PART A PLENARY TALKS -- CONTENTS -- Sponsors -- Publications in this Series -- Organizing Committees and Acknowledgements -- Marcel Grossmann Awards -- Preface -- Local conformal symmetry in black holes, standard model, and quantum gravity -- 1. Introduction -- 2. Black Holes -- 3. Local Conformal Symmetry -- 4. Quantum Gravity and the Standard Model -- 5. Indefinite Metric -- 6. Deterministic Quantum Mechanics -- References -- Effective quantum gravity observables and locally covariant QFT -- 1. Algebraic Approach to QFT -- 2. Locally Covariant Quantum Field Theory -- 3. Effective Quantum Gravity -- 3.1. Outline of the approach -- 3.2. Building models in pAQFT -- 3.3. Gauge-invariant observables -- 3.4. The role of deformation quantization -- 3.5. Few words about Epstein-Glaser renormalization -- 3.6. Background independence -- 4. Conclusions and Outlook -- References -- Supersymmetry and inflation -- 1. Introduction -- 2. Minimal models for Inflation and Supersymmetry Breaking -- 2.1. Sgoldstino Inflation -- 2.2. D-term Inflation -- 2.3. Other Models -- 2.4. Nilpotent Inflation (sgoldstino-less models) -- 3. Higher-curvature and standard Supergravity duals -- 3.1. R + R2 Supergravity -- 3.2. Scale-invariant R2 models -- 3.3. Nilpotent curvatures and sgoldstino-less Supergravity duals -- 4. Sgoldstino-less Models vs String Theory: Climbing Scalars -- Acknowledgements -- References -- No-scale supergravity inflation: A bridge between string theory and particle physics? -- 1. Cosmological Inflation -- 2. Slow-Roll Inflationary Models -- 3. Challenges for Inflationary Models -- 4. The Starobinsky Model -- 5. Higgs Inflation -- 6. Inflation Cries Out for Supersymmetry and (No-Scale) Supergravity -- 7. No-Scale Supergravity Models of Inflation -- 8. A No-Scale Inflationary Model to Fit Them All. 9. How Many e-Folds of Inflation, and How Does the Inflaton Decay? -- 10. No-Scale Framework for Particle Physics and Dark Matter -- 11. Summary -- Acknowledgments -- References -- What are fuzzballs, and do they have to behave as firewalls? -- 1. Early history -- 1.1. What is a black hole? -- 1.2. Hawking's puzzle -- 1.3. The no-hair theorem -- 1.4. The entropy of black holes -- 2. The fuzzball paradigm -- 2.1. Fuzzballs: beginnings -- 2.2. The structure of fuzzballs -- 3. The Bena-Warner microstate program -- 4. The small corrections theorem -- 5. Why is the semiclassical approximation violated? -- 6. Fuzzball complementarity -- 7. The firewall claim -- 7.1. What kind of complementarity were AMPS addressing? -- 7.1.1. The conflict of AMPS with the Bekenstein limit -- 7.1.2. The conflict of the AMPS argument with causality -- 8. Summary -- Acknowledgments -- References -- Pulsars as probes of gravity and fundamental physics -- 1. Introduction -- 1.1. Fundamental physics tested using radio astronomy -- 2. A Simple and Clean Experiment: Pulsars and Their Timing -- 2.1. The method -- 2.2. The laboratories -- 3. Pulsars as Gravitational Wave Detectors -- 3.1. Status of the PTA efforts -- 3.2. PTA science beyond detection -- 4. Constraining PPN Parameters -- 5. Binary Pulsars -- 5.1. The Hulse-Taylor pulsar -- 5.2. The double pulsar -- 6. Constraining Alternative Theories -- 7. Pulsar-Black Hole Systems -- 7.1. Studying the super-massive black hole in the Galactic center -- 8. Pulsars and an Image of Sgr A* -- 9. Summary -- Acknowledgments -- References -- Explosions throughout the universe -- 1. Swift - A Time Domain Observatory -- 2. A Potpourri of High Energy Transients -- 3. DG CVn Superflare -- 4. RS Oph Nova -- 5. V404 Cygni - Currently in Outburst -- 6. SN 2008D Shock Breakout -- 7. Sgr A∗ Flares. 8. Swift J1644+57 - The First Jetted Tidal Disruption Event -- 9. Short versus Long GRBs -- 10. Short GRBs: Demographics -- 11. Short GRBs: The Future -- 12. Tools to Study the High-z Universe -- 13. Conclusion -- References -- Understanding the engines behind cosmic explosions: Advice from Willem of Occam and T.H. White -- 1. Willem of Occam vs. T.H. White -- 2. Observed Diversity -- 2.1. SNe -- 2.2. GRBs -- 3. Proposed Engines -- 3.1. Core-collapse SNe -- 3.2. GRBs -- 4. Rates and Progenitors -- 4.1. SNe -- 4.2. GRBs -- 5. Energetics -- 5.1. SNe -- 5.2. GRBs -- 6. Durations and Diversity -- 6.1. SNe -- 6.2. GRBs -- 7. Other Constraints -- 7.1. SNe -- 7.2. GRBs -- 8. Modeling and the Big Picture -- References -- First stars, hypernovae, and superluminous supernovae -- 1. Introduction -- 2. Abundance Patters of Metal-Poor Stars -- 2.1. Very metal-poor (VMP) stars -- 2.2. Extremely metal-poor stars -- 3. Supernova-GRB Connection -- 3.1. GRB-supernova -- 3.2. Non-GRB hypernovae -- 3.3. XRF-supernovae -- 3.3.1. Non-SN GRBs -- 4. Nucleosynthesis in Jet-Induced Explosions -- 4.1. Diversity of 56Ni mass -- 4.2. Abundance patterns of C-enhanced metal-poor (CEMP) stars -- 5. Hypernova Models -- 5.1. GRB, hypernovae and broad line supernovae -- 5.2. Black holes versus neutron stars -- 5.3. Hypernovae of Type II and Type Ib? -- 6. Superluminous Supernovae -- 6.1. Radioactive decay models -- 6.1.1. SN 2007bi -- 6.1.2. SN PTF12dam -- 6.2. Magnetar driven supernovae -- 6.3. Circumstellar interaction model -- 6.3.1. Radiation hydrodynamical models -- 6.3.2. Origin of circumstellar matter -- References -- Temperature of neutron stars -- 1. Historical Background -- 1.1. Pioneering days -- 1.2. Einstein observatory and subsequent developments -- 2. Thermal Evolution Models -- 2.1. Neutrino emission processes -- 2.2. Superfluid suppression -- 2.4. Heating. 2.5. Effect of envelope composition -- 3. Recent Developments -- 3.1. Discovery of hot neutron stars -- 3.2. Recent thermal evolution models -- 4. Most Recent Developments -- 4.1. Soft X-ray transients in low mass X-ray binaries - another powerful method for constraining neutron star temperature -- 4.2. Cassiopeia a (Cas A) neutron star and most recent thermal evolution models -- 5. Some Related Problems -- 5.1. The effect of global neutrality -- 5.2. Neutron star equilibrium configurations with fully relativistic theory with strong, weak, electromagnetic and gravitational interactions -- 5.3. Thermal evolution of magnetars -- 6. Summary and Conclusion -- Acknowledgments -- References -- IceCube and the discovery of high-energy cosmic neutrinos -- 1. Introduction -- 2. The Rationale of Neutrino Astronomy -- 3. IceCube: The First Kilometer-Scale Neutrino Detector -- 4. The Status of Neutrino Astronomy -- 5. Closing in on the Sources -- 6. The Road Ahead -- Acknowledgments -- References -- Particle dark matter direct detection -- 1. Introduction -- 2. The DM Particles Direct Detection -- 3. The DM Model-Independent Results of DAMA -- 4. Implications and Comparisons -- 5. Future Perspectives for the DM Directionality Approach -- 6. Conclusions -- References -- How relativistic astrophysics has transformed since the 1960s -- 1. Extragalactic Astronomy and Cosmological Models -- 2. The CMB and the Early Universe -- 3. The Far Future -- 4. Beyond the Horizon -- 5. Concluding Comments -- References -- Perspectives from CTA in relativistic astrophysics -- 1. Introduction -- 2. The CTA Telescope Arrays -- 3. The CTA Observatory -- 4. CTA Key Science -- 4.1. Sky surveys -- 4.2. Particle acceleration -- 4.3. Transient phenomena and active galaxies -- 4.4. Fundamental physics and search for dark matter -- 5. Conclusion -- Acknowledgments -- References. The Planck mission: From observations to cosmological parameters -- 1. Introduction -- 2. Observations and scanning strategy -- 3. Instrument performance and calibration -- 4. Maps and power spectra -- 5. Power spectra and likelihood -- 6. Cosmology results -- 7. Lensing -- 8. Non-gaussianity -- 9. Conclusions -- References -- The cosmic matrix in the 50th anniversary of relativistic astrophysics -- 1. Introduction and the First Paradigm -- 1.1. Crab pulsar: A neutron star and a black hole -- 1.2. The Vela and CGRO satellites and GRBs -- 1.3. The fireball model compared and contrasted with the fireshell model -- 1.3.1. The fireball model -- 1.3.2. The fireshell model -- 2. Unveiling the GRB-SN Connection: The Second Paradigm -- 2.1. Introduction -- 2.2. The case of GRB 090618 -- 2.3. The emission process in Episode 1 -- 2.3.1. The time-resolved spectra and temperature variation -- 2.3.2. The power-law decay of the black body temperature -- 2.3.3. The radius of the emitting region -- 2.4. The emission process in Episode 2 -- 2.4.1. The identification of the P-GRB -- 2.4.2. The refinement of the P-GRB nature -- 2.4.3. The prompt emission and the CBM cloud structure -- 2.5. The emission process of Episode 3 -- 2.5.1. The late X-ray emission observed by swift/XRT -- 2.5.2. "The golden sample" -- 2.5.3. Episode 3 as a standard candle -- 3. The GRB-SN and the IGC: The Second Paradigm -- 3.1. IGC of a NS to a blackhole by a type Ib/c SN -- 3.2. The accretion process of the SN ejecta onto the companion NS -- 3.3. Reaching the critical mass of the accreting companion NS -- 4. The Application of the IGC Scenario to GRB 090618 -- 4.1. The SN ejecta accretion onto the companion NS -- 4.2. Inferences on the binary period -- 4.3. The collapse time and the role of neutrinos -- 5. Recent Highlights and the "Third Paradigm" -- 6. Conclusions -- References. The binary systems associated with short and long gamma-ray bursts and their detectability.

9789813226609


Electronic books.

Ziyaretçi Sayısı

Destekleyen Koha