International Symposium on Mathematics, Quantum Theory, and Cryptography : Proceedings of MQC 2019.

Yazar:Takagi, Tsuyoshi
Katkıda bulunan(lar):Wakayama, Masato | Tanaka, Keisuke | Kunihiro, Noboru | Kimoto, Kazufumi | Ikematsu, Yasuhiko
Materyal türü: KonuKonuSeri kaydı: Yayıncı: Singapore : Springer Singapore Pte. Limited, 2020Telif hakkı tarihi: �2021Tanım: 1 online resource (275 pages)İçerik türü:text Ortam türü:computer Taşıyıcı türü: online resourceISBN: 9789811551918Tür/Form:Electronic books.Ek fiziksel biçimler:Print version:: International Symposium on Mathematics, Quantum Theory, and CryptographyLOC classification: TA329-348Çevrimiçi kaynaklar: Click to View
İçindekiler:
Intro -- Foreword -- Preface -- Contents -- About the Editors -- &lt -- ExternalRef&gt -- &lt -- RefSource&gt -- swati.meherishi@springer.com&lt -- /RefSource&gt -- &lt -- RefTarget Address= -- Keynote -- Sustainable Cryptography -- What Kind of Insight Provide Analytical Solutions of Quantum Models? -- References -- Emerging Ultrastrong Coupling Between Light and Matter Observed in Circuit Quantum Electrodynamics -- References -- Summary -- Verified Numerical Computations and Related Applications -- A Review of Secret Key Distribution Based on Bounded Observability -- References -- Quantum Computing and Information Theory -- Quantum Random Numbers Generated by a Cloud Superconducting Quantum Computer -- 1 Introduction -- 2 Statistical Tests for Random Number Generators -- 3 NIST SP 800-22 -- 3.1 Frequency Test -- 3.2 Frequency Test Within a Block -- 3.3 Runs Test -- 3.4 The Longest Run of Ones Within a Block Test -- 3.5 Discrete Fourier Transform Test -- 3.6 Approximate Entropy Test -- 3.7 Cumulative Sums Test -- 4 Quantum Random Number Generation on the Cloud Quantum Computer -- 5 Conclusion -- References -- Quantum Factoring Algorithm: Resource Estimation and Survey of Experiments -- 1 Introduction -- 2 Outline of Shor's Quantum Factoring Algorithm (Shor) -- 2.1 Quantum Computation -- 2.2 Shor's Quantum Factoring Algorithm -- 2.3 Circuit Construction and Resource Estimation for Shor's Quantum Factoring Algorithm -- 2.4 Survey of Quantum Experiments for Factoring -- 3 Quantum Circuits Without Using the Order Information -- 3.1 Quantum Factoring Experiment Shown in IBMspsChuang -- 3.2 Quantum Factoring Experiment Shown in joseph -- 3.3 Quantum Factoring Experiment Shown in realization -- 4 Quantum Circuits with Explicitly Using the Order information -- 4.1 Quantum Factoring Experiment of N=15 Shown in photonic.
4.2 Quantum Factoring Experiment of N=21 Shown in spsqubitrecycing -- 4.3 Oversimplified Shor's Algorithm (oversimplified) -- 5 Summary and Concluding Remarks -- References -- Towards Constructing Fully Homomorphic Encryption without Ciphertext Noise from Group Theory -- 1 Introduction -- 1.1 Our Contributions -- 2 Preliminaries -- 3 Our Framework for FHE -- 3.1 Group-Theoretic Realization of Functions -- 3.2 Lift of Realization of Functions -- 3.3 The Proposed Framework -- 4 Examples of Realizations of Functions in Groups -- 4.1 Deterministic Case: Known Result -- 4.2 Deterministic Case: Proposed Constructions -- 4.3 Preliminaries: On Random Sampling of Group Elements -- 4.4 Probabilistic Case: ``Commutator-Separable'' Groups -- 4.5 Probabilistic Case: Simple Groups -- 5 Towards Achieving Secure Lift of Realization -- 5.1 A Remark on the Choice of Random Variables -- 5.2 Insecurity of a Matrix-Based Naive Construction -- 5.3 Observation for Avoiding Linear Constraints -- 5.4 Another Trial Using Tietze Transformations -- References -- From the Bloch Sphere to Phase-Space Representations with the Gottesman-Kitaev-Preskill Encoding -- 1 Introduction -- 2 GKP Encoding of Qubit States -- 3 Phase-Space Wigner Representation of GKP Encoded States -- 4 Quantification of Negativity of the Wigner Function for GKP Encoded States -- 5 Conclusions -- References -- Quantum Interactions -- Number Theoretic Study in Quantum Interactions -- References -- A Data Concealing Technique with Random Noise Disturbance and a Restoring Technique for the Concealed Data by Stochastic Process Estimation -- 1 Introduction -- 2 Mathematical Setups -- 2.1 How to Conceal Data -- 2.2 How to Restore Data -- 3 Example of Functionals and Simulation -- 3.1 An Example of the Set of Functionals -- 3.2 Simulation of Concealing and Restoring Data on Physical Layer.
4 Application to Data on Physical Layer and Presentation Layer -- 4.1 Binary Data of Pictorial Image -- 4.2 Analog Data of Pictorial Image -- 5 Conclusion and Future Work -- References -- Quantum Optics with Giant Atoms-the First Five Years -- 1 Introduction -- 2 Theory for Giant Atoms -- 2.1 One Giant Atom -- 2.2 One Giant Atom with Time Delay -- 2.3 Multiple Giant Atoms -- 3 Experiments with Giant Atoms -- 3.1 Superconducting Qubits and Surface Acoustic Waves -- 3.2 Superconducting Qubits and Microwave Transmission Lines -- 3.3 Cold Atoms in Optical Lattices -- 4 Conclusion and Outlook -- References -- Topics in Mathematics -- Extended Divisibility Relations for Constraint Polynomials of the Asymmetric Quantum Rabi Model -- 1 Introduction -- 2 The Confluent Picture of the Asymmetric Quantum Rabi Model -- 3 Extended Divisibility Properties for Constraint and Related Polynomials -- 4 Open Problems -- 4.1 Number of Exceptional Solutions of the AQRM -- 4.2 Classification of Parameter Regimes -- References -- Generalized Group-Subgroup Pair Graphs -- 1 Introduction -- 1.1 Conventions -- 2 Preliminaries -- 3 Cayley Graphs and Group-Subgroup Pair Graphs -- 3.1 Cayley Graphs -- 3.2 Group-Subgroup Pair Graphs -- 4 Homogeneity -- 5 Generalized Group-Subgroup Pair Graph -- 5.1 Definition -- 5.2 Examples -- 6 Spectra of G(G,H,S) -- 6.1 Adjacency Matrix of G(G,H,S) -- 6.2 When H is abelian -- 6.3 Petersen Extension -- References -- Post-Quantum Cryptography -- A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge -- 1 Introduction -- 2 Mathematical Background -- 2.1 Lattices and Their Bases -- 2.2 Successive Minima, Hermite's Constants, and Gaussian Heuristic -- 2.3 Introduction to Lattice Problems -- 3 Solving SVP Algorithms -- 3.1 Exact-SVP Algorithms -- 3.2 Approximate-SVP Algorithms.
4 The SVP Challenge and Recent Strategies -- 4.1 The Random Sampling Strategy -- 4.2 The Sub-Sieving Strategy -- References -- Recent Developments in Multivariate Public Key Cryptosystems -- 1 Introduction -- 2 UOV, Rainbow, and Variants of HFE -- 2.1 Basic Constructions of Multivariate Public Key Cryptosystems -- 2.2 UOV -- 2.3 Rainbow -- 2.4 HFE -- 2.5 Variants of HFE -- 3 New Encryption Schemes -- 3.1 HFERP -- 3.2 ZHFE -- 3.3 EFC -- 3.4 ABC -- 4 Conclusion -- References -- Ramanujan Graphs for Post-Quantum Cryptography -- 1 Introduction -- 2 Ramanujan Graphs and Their Cryptographic Applications -- 2.1 Security on Cayley Hashes and Word Problems -- 2.2 Lifting Attacks -- 3 The Families of LPS-Type Graphs -- 3.1 Proof of the Ramanujan-Ness of Graphs XP,Q(p,q) when P=13 -- 4 Relationship Between LPS-Type Graphs and Pizer's Graphs -- 4.1 Similarities and Differences -- 5 Open Problems -- References -- Post-Quantum Constant-Round Group Key Exchange from Static Assumptions -- 1 Introduction -- 1.1 Background -- 1.2 Our Contributions -- 1.3 Key Techniques -- 1.4 Organization -- 2 Preliminaries -- 2.1 Group Key Exchange -- 2.2 SIDH and CSIDH Key Exchange -- 3 New Assumptions on Supersingular Invariants -- 3.1 New Assumptions on Supersingular j-Invariants -- 3.2 New Assumptions on Supersingular Montgomery Coefficients -- 4 Proposed Post-Quantum Group Key Exchange (GKE) -- 4.1 A Generic JV-Type Compiler for GKE from Two-Party KE (ch18JusVau96) -- 4.2 Constant-Round GKE from Static Standard Assumptions -- 4.3 Two-Round Product-BD (PBD) GKE from d-DSJP Assumption -- 4.4 Two-Round PBD GKE from d-DSMP Assumption -- References -- 19 Correction to: International Symposium on Mathematics, Quantum Theory, and Cryptography.
Correction to: T. Takagi et al. (eds.), International Symposium on Mathematics, Quantum Theory, and Cryptography, Mathematics for Industry 33, https://doi.org/10.1007/978-981-15-5191-8 -- Index.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
    Ortalama derecelendirme: 0.0 (0 oy)
Bu kayda ilişkin materyal yok

Intro -- Foreword -- Preface -- Contents -- About the Editors -- &lt -- ExternalRef&gt -- &lt -- RefSource&gt -- swati.meherishi@springer.com&lt -- /RefSource&gt -- &lt -- RefTarget Address= -- Keynote -- Sustainable Cryptography -- What Kind of Insight Provide Analytical Solutions of Quantum Models? -- References -- Emerging Ultrastrong Coupling Between Light and Matter Observed in Circuit Quantum Electrodynamics -- References -- Summary -- Verified Numerical Computations and Related Applications -- A Review of Secret Key Distribution Based on Bounded Observability -- References -- Quantum Computing and Information Theory -- Quantum Random Numbers Generated by a Cloud Superconducting Quantum Computer -- 1 Introduction -- 2 Statistical Tests for Random Number Generators -- 3 NIST SP 800-22 -- 3.1 Frequency Test -- 3.2 Frequency Test Within a Block -- 3.3 Runs Test -- 3.4 The Longest Run of Ones Within a Block Test -- 3.5 Discrete Fourier Transform Test -- 3.6 Approximate Entropy Test -- 3.7 Cumulative Sums Test -- 4 Quantum Random Number Generation on the Cloud Quantum Computer -- 5 Conclusion -- References -- Quantum Factoring Algorithm: Resource Estimation and Survey of Experiments -- 1 Introduction -- 2 Outline of Shor's Quantum Factoring Algorithm (Shor) -- 2.1 Quantum Computation -- 2.2 Shor's Quantum Factoring Algorithm -- 2.3 Circuit Construction and Resource Estimation for Shor's Quantum Factoring Algorithm -- 2.4 Survey of Quantum Experiments for Factoring -- 3 Quantum Circuits Without Using the Order Information -- 3.1 Quantum Factoring Experiment Shown in IBMspsChuang -- 3.2 Quantum Factoring Experiment Shown in joseph -- 3.3 Quantum Factoring Experiment Shown in realization -- 4 Quantum Circuits with Explicitly Using the Order information -- 4.1 Quantum Factoring Experiment of N=15 Shown in photonic.

4.2 Quantum Factoring Experiment of N=21 Shown in spsqubitrecycing -- 4.3 Oversimplified Shor's Algorithm (oversimplified) -- 5 Summary and Concluding Remarks -- References -- Towards Constructing Fully Homomorphic Encryption without Ciphertext Noise from Group Theory -- 1 Introduction -- 1.1 Our Contributions -- 2 Preliminaries -- 3 Our Framework for FHE -- 3.1 Group-Theoretic Realization of Functions -- 3.2 Lift of Realization of Functions -- 3.3 The Proposed Framework -- 4 Examples of Realizations of Functions in Groups -- 4.1 Deterministic Case: Known Result -- 4.2 Deterministic Case: Proposed Constructions -- 4.3 Preliminaries: On Random Sampling of Group Elements -- 4.4 Probabilistic Case: ``Commutator-Separable'' Groups -- 4.5 Probabilistic Case: Simple Groups -- 5 Towards Achieving Secure Lift of Realization -- 5.1 A Remark on the Choice of Random Variables -- 5.2 Insecurity of a Matrix-Based Naive Construction -- 5.3 Observation for Avoiding Linear Constraints -- 5.4 Another Trial Using Tietze Transformations -- References -- From the Bloch Sphere to Phase-Space Representations with the Gottesman-Kitaev-Preskill Encoding -- 1 Introduction -- 2 GKP Encoding of Qubit States -- 3 Phase-Space Wigner Representation of GKP Encoded States -- 4 Quantification of Negativity of the Wigner Function for GKP Encoded States -- 5 Conclusions -- References -- Quantum Interactions -- Number Theoretic Study in Quantum Interactions -- References -- A Data Concealing Technique with Random Noise Disturbance and a Restoring Technique for the Concealed Data by Stochastic Process Estimation -- 1 Introduction -- 2 Mathematical Setups -- 2.1 How to Conceal Data -- 2.2 How to Restore Data -- 3 Example of Functionals and Simulation -- 3.1 An Example of the Set of Functionals -- 3.2 Simulation of Concealing and Restoring Data on Physical Layer.

4 Application to Data on Physical Layer and Presentation Layer -- 4.1 Binary Data of Pictorial Image -- 4.2 Analog Data of Pictorial Image -- 5 Conclusion and Future Work -- References -- Quantum Optics with Giant Atoms-the First Five Years -- 1 Introduction -- 2 Theory for Giant Atoms -- 2.1 One Giant Atom -- 2.2 One Giant Atom with Time Delay -- 2.3 Multiple Giant Atoms -- 3 Experiments with Giant Atoms -- 3.1 Superconducting Qubits and Surface Acoustic Waves -- 3.2 Superconducting Qubits and Microwave Transmission Lines -- 3.3 Cold Atoms in Optical Lattices -- 4 Conclusion and Outlook -- References -- Topics in Mathematics -- Extended Divisibility Relations for Constraint Polynomials of the Asymmetric Quantum Rabi Model -- 1 Introduction -- 2 The Confluent Picture of the Asymmetric Quantum Rabi Model -- 3 Extended Divisibility Properties for Constraint and Related Polynomials -- 4 Open Problems -- 4.1 Number of Exceptional Solutions of the AQRM -- 4.2 Classification of Parameter Regimes -- References -- Generalized Group-Subgroup Pair Graphs -- 1 Introduction -- 1.1 Conventions -- 2 Preliminaries -- 3 Cayley Graphs and Group-Subgroup Pair Graphs -- 3.1 Cayley Graphs -- 3.2 Group-Subgroup Pair Graphs -- 4 Homogeneity -- 5 Generalized Group-Subgroup Pair Graph -- 5.1 Definition -- 5.2 Examples -- 6 Spectra of G(G,H,S) -- 6.1 Adjacency Matrix of G(G,H,S) -- 6.2 When H is abelian -- 6.3 Petersen Extension -- References -- Post-Quantum Cryptography -- A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge -- 1 Introduction -- 2 Mathematical Background -- 2.1 Lattices and Their Bases -- 2.2 Successive Minima, Hermite's Constants, and Gaussian Heuristic -- 2.3 Introduction to Lattice Problems -- 3 Solving SVP Algorithms -- 3.1 Exact-SVP Algorithms -- 3.2 Approximate-SVP Algorithms.

4 The SVP Challenge and Recent Strategies -- 4.1 The Random Sampling Strategy -- 4.2 The Sub-Sieving Strategy -- References -- Recent Developments in Multivariate Public Key Cryptosystems -- 1 Introduction -- 2 UOV, Rainbow, and Variants of HFE -- 2.1 Basic Constructions of Multivariate Public Key Cryptosystems -- 2.2 UOV -- 2.3 Rainbow -- 2.4 HFE -- 2.5 Variants of HFE -- 3 New Encryption Schemes -- 3.1 HFERP -- 3.2 ZHFE -- 3.3 EFC -- 3.4 ABC -- 4 Conclusion -- References -- Ramanujan Graphs for Post-Quantum Cryptography -- 1 Introduction -- 2 Ramanujan Graphs and Their Cryptographic Applications -- 2.1 Security on Cayley Hashes and Word Problems -- 2.2 Lifting Attacks -- 3 The Families of LPS-Type Graphs -- 3.1 Proof of the Ramanujan-Ness of Graphs XP,Q(p,q) when P=13 -- 4 Relationship Between LPS-Type Graphs and Pizer's Graphs -- 4.1 Similarities and Differences -- 5 Open Problems -- References -- Post-Quantum Constant-Round Group Key Exchange from Static Assumptions -- 1 Introduction -- 1.1 Background -- 1.2 Our Contributions -- 1.3 Key Techniques -- 1.4 Organization -- 2 Preliminaries -- 2.1 Group Key Exchange -- 2.2 SIDH and CSIDH Key Exchange -- 3 New Assumptions on Supersingular Invariants -- 3.1 New Assumptions on Supersingular j-Invariants -- 3.2 New Assumptions on Supersingular Montgomery Coefficients -- 4 Proposed Post-Quantum Group Key Exchange (GKE) -- 4.1 A Generic JV-Type Compiler for GKE from Two-Party KE (ch18JusVau96) -- 4.2 Constant-Round GKE from Static Standard Assumptions -- 4.3 Two-Round Product-BD (PBD) GKE from d-DSJP Assumption -- 4.4 Two-Round PBD GKE from d-DSMP Assumption -- References -- 19 Correction to: International Symposium on Mathematics, Quantum Theory, and Cryptography.

Correction to: T. Takagi et al. (eds.), International Symposium on Mathematics, Quantum Theory, and Cryptography, Mathematics for Industry 33, https://doi.org/10.1007/978-981-15-5191-8 -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

yorum yazmak için.

Ziyaretçi Sayısı

Destekleyen Koha