Biocomputing 2020 - Proceedings Of The Pacific Symposium.

Yazar:Altman, Russ B
Katkıda bulunan(lar):Dunker, A Keith | Hunter, Lawrence | Ritchie, Marylyn D | Murray, Tiffany A | Klein, Teri E
Materyal türü: KonuKonuYayıncı: Singapore : World Scientific Publishing Company, 2019Telif hakkı tarihi: �2020Tanım: 1 online resource (762 pages)İçerik türü:text Ortam türü:computer Taşıyıcı türü: online resourceISBN: 9789811215636Tür/Form:Electronic books.Ek fiziksel biçimler:Print version:: Biocomputing 2020 - Proceedings Of The Pacific SymposiumÇevrimiçi kaynaklar: Click to View
İçindekiler:
Intro -- Content -- Preface -- ARTIFICIAL INTELLIGENCE FOR ENHANCING CLINICAL MEDICINE -- Session Introduction: Artificial Intelligence for Enhancing Clinical Medicine -- 1. Introduction -- 2. Novel Research Applying Artificial Intelligence to Clinical Medicine -- 2.1. Artificial intelligence for predicting patient outcomes -- 2.2. Artificial intelligence for improved insight into disease pathogenesis and features -- 3. Artificial intelligence for advancing medical workflows -- 4. Artificial intelligence for improving imaging -- 5. Conclusion -- References -- Predicting Longitudinal Outcomes of Alzheimer's Disease via a Tensor-Based Joint Classification and Regression Model -- 1. Introduction -- 2. Methods -- 2.1. The Longitudinal Joint Learning Model -- 2.2. The Solution Algorithm Using the Multi-Block ADMM -- 3. Experiments -- 3.1. Performance -- 3.2. Empirical Convergence -- 3.3. Biomarker Identification -- 4. Conclusion -- Acknowledgements -- References -- Robustly Extracting Medical Knowledge from EHRs: A Case Study of Learning a Health Knowledge Graph -- 1. Introduction -- 2. Related Work -- 3. Methods -- 3.1. Data collection and preparation -- 3.2. Evaluation with GHKG -- 3.3. Disease predictability analysis -- 3.4. Demographic analysis -- 3.5. Non-linear methods -- 4. Results -- 5. Discussion -- 5.1. Data size does not always matter. -- 5.2. Confounders may explain errors -- 5.3. Increased model complexity does not necessarily help -- 5.4. Limitations remain as an opportunity for future work -- 6. Conclusion -- Acknowledgements -- References -- Increasing Clinical Trial Accrual via Automated Matching of Biomarker Criteria -- 1. INTRODUCTION -- 2. MATERIALS AND METHODS -- 2.1. Specimens and Retrospective Analysis -- 2.2. Real-time Analysis -- 2.3. Source of Biomarker-based Clinical Trial Data -- 3. RESULTS.
3.1. STAMP assay identifies somatic mutations -- 3.2. Algorithmic pipeline flags eligible patients for precision medicine clinical trials -- 3.2.1. Automation of Feature Matching -- 3.2.2. Manual Review of Matching Output -- 3.3. Validation of algorithmic pipeline -- 3.4. Match rate analysis of STAMP-identified mutations -- 4. DISCUSSION -- 4.1. Incorporation of informatics into clinical workflows -- 4.2. Limitations of algorithmic pipelines -- 5. CONCLUSION -- 6. AUTHOR CONTRIBUTIONS -- 7. ACKNOWLEDGEMENTS -- 8. REFERENCES -- 9. FIGURES -- 10. SUPPLEMENTARY TABLES AND FIGURES -- Addressing the Credit Assignment Problem in Treatment Outcome Prediction Using Temporal Difference Learning -- 1. Introduction -- 2. Dataset -- 3. Methods -- 3.1. Feature Extraction -- 3.2. Temporal Difference Learning -- 3.2.1. State-Estimation -- 3.2.2. Value Iteration -- 3.2.3. Optimization -- 3.3. Baselines and Performance Measure -- 4. Results -- 5. Discussion and Conclusion -- References -- Multiclass Disease Classification from Microbial Whole-Community Metagenomes -- 1. Introduction -- 2. Previous Work -- 3. Problem Setup -- 3.1. Dataset Construction -- 3.2. Graph Convolutional Neural Networks -- 3.3. Models -- 3.4. Training -- 4. Results -- 5. Conclusion -- 6. Acknowledgments -- 7. External Links -- References -- LitGen: Genetic Literature Recommendation Guided by Human Explanations -- 1. Introduction -- 2. Clinical Variant Curation Data -- 2.1. ClinGen's Variant Curation Interface (VCI) -- 2.2. Labeled papers -- 2.3. Unlabeled papers -- 3. Method -- 3.1. BiLSTM baseline -- 3.2. Leveraging unlabeled data -- 3.3. Explanations in multitask learning -- 3.4. Explanations as feature selection for proxy labeling -- 4. Experimental results -- 4.1. Evaluation metrics -- 4.2. Performance comparison -- 4.3. Performance of Proxy Labeling Model.
4.4. Performance by Evidence Types -- 5. Discussion -- References -- From Genome to Phenome: Predicting Multiple Cancer Phenotypes Based on Somatic Genomic Alterations via the Genomic Impact Transformer -- 1. Introduction -- 2. Materials and methods -- 2.1. SGAs and DEGs pre-processing -- 2.2. The GIT neural network -- 2.2.1. GIT network structure: encoder-decoder architecture -- 2.2.2. Pre-training gene embeddings using Gene2Vec algorithm -- 2.2.3. Encoder: multi-head self-attention mechanism -- 2.2.4. Decoder: multi-layer perceptron (MLP) -- 2.3. Training and evaluation -- 3. Results -- 3.1. GIT statistically detects real biological signals -- 3.2. Gene embeddings compactly represent the functional impact of SGAs -- 3.4. Personalized tumor embeddings reveal distinct survival profiles -- 3.5. Tumor embeddings are predictive of drug responses of cancer cell lines -- 4. Conclusion and Future Work -- Acknowledgments -- Funding -- References -- Automated Phenotyping of Patients with Non-Alcoholic Fatty Liver Disease Reveals Clinically Relevant Disease Subtypes -- 1. Introduction -- 2. Methods -- 2.1. NAFLD definition -- 2.2. Natural language processing -- 2.3. Data collection -- 2.4. Clinical feature standardization and quality control -- 2.4.1. Demographic data -- 2.4.2. Diagnoses, procedures, medications -- 2.4.3. Laboratory tests -- 2.4.4. Vital signs -- 2.5. Patient pairwise distance and clustering -- 2.6. Statistical analysis -- 2.6.1. Descriptive statistics -- 2.6.2. Survival analysis -- 3. Results -- 3.1. Descriptive statistics for the cohort -- 3.2. Identification of NAFLD subtypes -- 3.3. Identification of distinct outcomes by NAFLD subtype -- 3.4. Internal cross-validation of the subtypes discovered -- 4. Conclusion -- 5. References -- References -- Monitoring ICU Mortality Risk with a Long Short-Term Memory Recurrent Neural Network.
1. Introduction -- 2. Background and Related Work -- 3. Data and Preprocessing -- 3.1. Data Source and Cohort Selection -- 3.2. Data Extraction and Preprocessing -- 4. Methodology -- 4.1. Mortality Monitoring Task -- 4.2. Average Pooling and Attention Mechanism -- 4.3. Recurrent Neural Network (RNN) -- 5. Experimental Design -- 5.1. Sampling Strategy -- 5.2. Baseline Model -- 5.3. Experimental Settings -- 6. Results and Analysis -- 6.1. Dimensionality Analysis -- 6.2. Prediction with Different Feature Representations -- 6.3. Interpreting Mortality of Learned Representation -- 7. Discussion and Conclusions -- References -- Multilevel Self-Attention Model and Its Use on Medical Risk Prediction -- 1. Introduction -- 2. Related Work -- 2.1. Future disease prediction -- 3. Methods -- 3.1. Terminology and Notation -- 3.2. Model Architecture -- 3.3. Self-attention Encoder Unit -- 3.4. Loss Function -- 4. Experiments -- 4.1. Source of Data -- 4.2. Dataset preprocessing -- 4.3. Implementation details -- 5. Results -- 5.1. Future disease prediction -- 5.2. Future cost prediction -- 5.3. Case study for the self-attention mechanism -- 6. Conclusion -- 7. Bibliography -- Identifying Transitional High Cost Users from Unstructured Patient Profiles Written by Primary Care Physicians -- 1. Introduction -- 2. Data -- 2.1. EMRPC -- 2.2. Total Healthcare Costs -- 2.3. Encoding of Ordinal Variables -- 2.4. Word Embeddings -- 3. Methods -- 3.1. Bag of Words -- 3.2. EmbEncode -- 3.3. Historical Baseline -- 3.4. Varying the Training Set -- 3.5. Varying the Evaluation Set -- 4. Results -- 5. Discussion -- Acknowledgments -- References -- Obtaining Dual-Energy Computed Tomography (CT) Information from a Single-Energy CT Image for Quantitative Imaging Analysis of Living Subjects by Using Deep Learning -- 1. Introduction -- 2. Methods -- 3. Results.
4. Discussion and Conclusion -- 5. Acknowledge -- References -- INTRINSICALLY DISORDERED PROTEINS (IDPS) AND THEIR FUNCTIONS -- Session Introduction: On the Importance of Computational Biology and Bioinformatics to the Origins and Rapid Progression of the Intrinsically Disordered Proteins Field -- 1. Introduction -- 2. Computational prediction of IDPs and IDRs and their functions -- 3. Popularization of research on IDPs and IDRs -- 4. A Collection of Recent Papers on IDPs and IDRs -- References -- Many-to-One Binding by Intrinsically Disordered Protein Regions -- 1. Introduction -- 2. Results -- 2.1. Many-to-one binding datasets -- 2.2. Many-to-one binding profiles: independent and overlapping -- 2.3 Comparing VOR (with backbone only) and RMS(SE(BASA Values -- 2.4. Selected many-to-one case studies -- 3. Discussion -- 4. Materials and Methods -- 4.1. Dataset preparation -- 4.2. MoRF sequence similarity -- 4.3. MoRF interface similarity -- References -- Disordered Function Conjunction: On the In-Silico Function Annotation of Intrinsically Disordered Regions -- 1. Introduction -- 2. Materials and Methods -- 2.1. Data collection -- 2.2. Computational workflow -- 2.2.1. Feature-based representation of protein regions -- 2.2.2. Prediction of protein region functions -- 2.2.3. Assessment of the function prediction and clustering -- 3. Results and Discussion -- 3.1. Prediction of individual functions of IDRs -- 3.2. IDRs described in multidimensional space form function-related clusters -- 3.3. Case studies -- 4. Conclusions -- Acknowledgments -- References -- De novo Ensemble Modeling Suggests that AP2-Binding to Disordered Regions Can Increase Steric Volume of Epsin but Not Eps15 -- 1. Introduction -- 2. Methods -- 2.1. Generation of structural ensembles -- 2.2. Filtering Epsin conformers to mimic the effect of Plasma membrane.
2.3. Docking AP2(Sa(B to the IDRs by superposition.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
    Ortalama derecelendirme: 0.0 (0 oy)
Bu kayda ilişkin materyal yok

Intro -- Content -- Preface -- ARTIFICIAL INTELLIGENCE FOR ENHANCING CLINICAL MEDICINE -- Session Introduction: Artificial Intelligence for Enhancing Clinical Medicine -- 1. Introduction -- 2. Novel Research Applying Artificial Intelligence to Clinical Medicine -- 2.1. Artificial intelligence for predicting patient outcomes -- 2.2. Artificial intelligence for improved insight into disease pathogenesis and features -- 3. Artificial intelligence for advancing medical workflows -- 4. Artificial intelligence for improving imaging -- 5. Conclusion -- References -- Predicting Longitudinal Outcomes of Alzheimer's Disease via a Tensor-Based Joint Classification and Regression Model -- 1. Introduction -- 2. Methods -- 2.1. The Longitudinal Joint Learning Model -- 2.2. The Solution Algorithm Using the Multi-Block ADMM -- 3. Experiments -- 3.1. Performance -- 3.2. Empirical Convergence -- 3.3. Biomarker Identification -- 4. Conclusion -- Acknowledgements -- References -- Robustly Extracting Medical Knowledge from EHRs: A Case Study of Learning a Health Knowledge Graph -- 1. Introduction -- 2. Related Work -- 3. Methods -- 3.1. Data collection and preparation -- 3.2. Evaluation with GHKG -- 3.3. Disease predictability analysis -- 3.4. Demographic analysis -- 3.5. Non-linear methods -- 4. Results -- 5. Discussion -- 5.1. Data size does not always matter. -- 5.2. Confounders may explain errors -- 5.3. Increased model complexity does not necessarily help -- 5.4. Limitations remain as an opportunity for future work -- 6. Conclusion -- Acknowledgements -- References -- Increasing Clinical Trial Accrual via Automated Matching of Biomarker Criteria -- 1. INTRODUCTION -- 2. MATERIALS AND METHODS -- 2.1. Specimens and Retrospective Analysis -- 2.2. Real-time Analysis -- 2.3. Source of Biomarker-based Clinical Trial Data -- 3. RESULTS.

3.1. STAMP assay identifies somatic mutations -- 3.2. Algorithmic pipeline flags eligible patients for precision medicine clinical trials -- 3.2.1. Automation of Feature Matching -- 3.2.2. Manual Review of Matching Output -- 3.3. Validation of algorithmic pipeline -- 3.4. Match rate analysis of STAMP-identified mutations -- 4. DISCUSSION -- 4.1. Incorporation of informatics into clinical workflows -- 4.2. Limitations of algorithmic pipelines -- 5. CONCLUSION -- 6. AUTHOR CONTRIBUTIONS -- 7. ACKNOWLEDGEMENTS -- 8. REFERENCES -- 9. FIGURES -- 10. SUPPLEMENTARY TABLES AND FIGURES -- Addressing the Credit Assignment Problem in Treatment Outcome Prediction Using Temporal Difference Learning -- 1. Introduction -- 2. Dataset -- 3. Methods -- 3.1. Feature Extraction -- 3.2. Temporal Difference Learning -- 3.2.1. State-Estimation -- 3.2.2. Value Iteration -- 3.2.3. Optimization -- 3.3. Baselines and Performance Measure -- 4. Results -- 5. Discussion and Conclusion -- References -- Multiclass Disease Classification from Microbial Whole-Community Metagenomes -- 1. Introduction -- 2. Previous Work -- 3. Problem Setup -- 3.1. Dataset Construction -- 3.2. Graph Convolutional Neural Networks -- 3.3. Models -- 3.4. Training -- 4. Results -- 5. Conclusion -- 6. Acknowledgments -- 7. External Links -- References -- LitGen: Genetic Literature Recommendation Guided by Human Explanations -- 1. Introduction -- 2. Clinical Variant Curation Data -- 2.1. ClinGen's Variant Curation Interface (VCI) -- 2.2. Labeled papers -- 2.3. Unlabeled papers -- 3. Method -- 3.1. BiLSTM baseline -- 3.2. Leveraging unlabeled data -- 3.3. Explanations in multitask learning -- 3.4. Explanations as feature selection for proxy labeling -- 4. Experimental results -- 4.1. Evaluation metrics -- 4.2. Performance comparison -- 4.3. Performance of Proxy Labeling Model.

4.4. Performance by Evidence Types -- 5. Discussion -- References -- From Genome to Phenome: Predicting Multiple Cancer Phenotypes Based on Somatic Genomic Alterations via the Genomic Impact Transformer -- 1. Introduction -- 2. Materials and methods -- 2.1. SGAs and DEGs pre-processing -- 2.2. The GIT neural network -- 2.2.1. GIT network structure: encoder-decoder architecture -- 2.2.2. Pre-training gene embeddings using Gene2Vec algorithm -- 2.2.3. Encoder: multi-head self-attention mechanism -- 2.2.4. Decoder: multi-layer perceptron (MLP) -- 2.3. Training and evaluation -- 3. Results -- 3.1. GIT statistically detects real biological signals -- 3.2. Gene embeddings compactly represent the functional impact of SGAs -- 3.4. Personalized tumor embeddings reveal distinct survival profiles -- 3.5. Tumor embeddings are predictive of drug responses of cancer cell lines -- 4. Conclusion and Future Work -- Acknowledgments -- Funding -- References -- Automated Phenotyping of Patients with Non-Alcoholic Fatty Liver Disease Reveals Clinically Relevant Disease Subtypes -- 1. Introduction -- 2. Methods -- 2.1. NAFLD definition -- 2.2. Natural language processing -- 2.3. Data collection -- 2.4. Clinical feature standardization and quality control -- 2.4.1. Demographic data -- 2.4.2. Diagnoses, procedures, medications -- 2.4.3. Laboratory tests -- 2.4.4. Vital signs -- 2.5. Patient pairwise distance and clustering -- 2.6. Statistical analysis -- 2.6.1. Descriptive statistics -- 2.6.2. Survival analysis -- 3. Results -- 3.1. Descriptive statistics for the cohort -- 3.2. Identification of NAFLD subtypes -- 3.3. Identification of distinct outcomes by NAFLD subtype -- 3.4. Internal cross-validation of the subtypes discovered -- 4. Conclusion -- 5. References -- References -- Monitoring ICU Mortality Risk with a Long Short-Term Memory Recurrent Neural Network.

1. Introduction -- 2. Background and Related Work -- 3. Data and Preprocessing -- 3.1. Data Source and Cohort Selection -- 3.2. Data Extraction and Preprocessing -- 4. Methodology -- 4.1. Mortality Monitoring Task -- 4.2. Average Pooling and Attention Mechanism -- 4.3. Recurrent Neural Network (RNN) -- 5. Experimental Design -- 5.1. Sampling Strategy -- 5.2. Baseline Model -- 5.3. Experimental Settings -- 6. Results and Analysis -- 6.1. Dimensionality Analysis -- 6.2. Prediction with Different Feature Representations -- 6.3. Interpreting Mortality of Learned Representation -- 7. Discussion and Conclusions -- References -- Multilevel Self-Attention Model and Its Use on Medical Risk Prediction -- 1. Introduction -- 2. Related Work -- 2.1. Future disease prediction -- 3. Methods -- 3.1. Terminology and Notation -- 3.2. Model Architecture -- 3.3. Self-attention Encoder Unit -- 3.4. Loss Function -- 4. Experiments -- 4.1. Source of Data -- 4.2. Dataset preprocessing -- 4.3. Implementation details -- 5. Results -- 5.1. Future disease prediction -- 5.2. Future cost prediction -- 5.3. Case study for the self-attention mechanism -- 6. Conclusion -- 7. Bibliography -- Identifying Transitional High Cost Users from Unstructured Patient Profiles Written by Primary Care Physicians -- 1. Introduction -- 2. Data -- 2.1. EMRPC -- 2.2. Total Healthcare Costs -- 2.3. Encoding of Ordinal Variables -- 2.4. Word Embeddings -- 3. Methods -- 3.1. Bag of Words -- 3.2. EmbEncode -- 3.3. Historical Baseline -- 3.4. Varying the Training Set -- 3.5. Varying the Evaluation Set -- 4. Results -- 5. Discussion -- Acknowledgments -- References -- Obtaining Dual-Energy Computed Tomography (CT) Information from a Single-Energy CT Image for Quantitative Imaging Analysis of Living Subjects by Using Deep Learning -- 1. Introduction -- 2. Methods -- 3. Results.

4. Discussion and Conclusion -- 5. Acknowledge -- References -- INTRINSICALLY DISORDERED PROTEINS (IDPS) AND THEIR FUNCTIONS -- Session Introduction: On the Importance of Computational Biology and Bioinformatics to the Origins and Rapid Progression of the Intrinsically Disordered Proteins Field -- 1. Introduction -- 2. Computational prediction of IDPs and IDRs and their functions -- 3. Popularization of research on IDPs and IDRs -- 4. A Collection of Recent Papers on IDPs and IDRs -- References -- Many-to-One Binding by Intrinsically Disordered Protein Regions -- 1. Introduction -- 2. Results -- 2.1. Many-to-one binding datasets -- 2.2. Many-to-one binding profiles: independent and overlapping -- 2.3 Comparing VOR (with backbone only) and RMS(SE(BASA Values -- 2.4. Selected many-to-one case studies -- 3. Discussion -- 4. Materials and Methods -- 4.1. Dataset preparation -- 4.2. MoRF sequence similarity -- 4.3. MoRF interface similarity -- References -- Disordered Function Conjunction: On the In-Silico Function Annotation of Intrinsically Disordered Regions -- 1. Introduction -- 2. Materials and Methods -- 2.1. Data collection -- 2.2. Computational workflow -- 2.2.1. Feature-based representation of protein regions -- 2.2.2. Prediction of protein region functions -- 2.2.3. Assessment of the function prediction and clustering -- 3. Results and Discussion -- 3.1. Prediction of individual functions of IDRs -- 3.2. IDRs described in multidimensional space form function-related clusters -- 3.3. Case studies -- 4. Conclusions -- Acknowledgments -- References -- De novo Ensemble Modeling Suggests that AP2-Binding to Disordered Regions Can Increase Steric Volume of Epsin but Not Eps15 -- 1. Introduction -- 2. Methods -- 2.1. Generation of structural ensembles -- 2.2. Filtering Epsin conformers to mimic the effect of Plasma membrane.

2.3. Docking AP2(Sa(B to the IDRs by superposition.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

yorum yazmak için.

Ziyaretçi Sayısı

Destekleyen Koha