Biocomputing 2018 - Proceedings Of The Pacific Symposium.

Yazar:Altman, Russ B
Katkıda bulunan(lar):Dunker, A Keith | Hunter, Lawrence | Ritchie, Marylyn D | Murray, Tiffany A | Klein, Teri E
Materyal türü: KonuKonuYayıncı: Singapore : World Scientific Publishing Company, 2017Telif hakkı tarihi: �2018Tanım: 1 online resource (649 pages)İçerik türü:text Ortam türü:computer Taşıyıcı türü: online resourceISBN: 9789813235533Tür/Form:Electronic books.Ek fiziksel biçimler:Print version:: Biocomputing 2018 - Proceedings Of The Pacific SymposiumÇevrimiçi kaynaklar: Click to View
İçindekiler:
Intro -- Preface -- APPLICATIONS OF GENETICS, GENOMICS AND BIOINFORMATICS IN DRUG DISCOVERY -- Session introduction -- 1. Introduction -- 2. Session Contributions -- 2.1. Drug mechanisms of action and drug combinations -- 2.2. Drug metabolism and in silico drug screening -- 2.3. Disease genes and pathways -- 3. Acknowledgments -- References -- Characterization of drug-induced splicing complexity in prostate cancer cell line using long read technology -- Introduction -- Results -- Discussion -- Methods -- Supplementary -- Acknowledgements -- References -- Prediction of protein-ligand interactions from paired protein sequence motifs and ligand substructures -- 1. Introduction -- 1.1. Decreasing returns in drug discovery pipelines -- 1.2. Existing methods for prediction of protein-ligand interactions -- 2. Methods -- 2.1. Data set -- 2.2. Protein Featurization -- 2.3. Ligand Featurization -- 2.4. Boosting Model -- 2.5. Cross Validation Approaches -- 3. Results -- 3.1. Model Performance -- 3.2. Most predictive motif features -- 3.3. Known positive examples -- 3.3.1. Uricase - Uric acid -- 3.3.2. Chloramphenicol O-acetyltransferase - Chloramphenicol -- 3.3.3. Transthyretin -T4 -- 3.4. Interpreting ADT Paths -- 3.4.1. Path lengths -- 3.4.2. Protein kinase C - Phosphatidylserine -- 4. Discussion -- Acknowledgments -- References -- Cell-specific prediction and application of drug-induced gene expression profiles -- 1. Introduction -- 2. Methods -- 2.1. Notation and terminology -- 2.2. Data processing -- 2.3. The Drug Neighbor Profile Prediction algorithm -- 2.4. The Fast, Low-Rank Tensor Completion algorithm -- 2.5. Baseline averaging schemes -- 2.6. Cross-validation for predicting gene expression profiles -- 2.7. Predicting drug targets and ATC codes -- 3. Results -- 3.1. Overall accuracy -- 3.2. Tradeoffs in accuracy across drug-cell space.
3.3. Effects of varying observation density -- 3.4. Accuracy of differentially expressed genes -- 3.5. Analysis of cell-specificity -- 3.6. Utility of completed data for downstream prediction of drug properties -- 4. Discussion -- Supplementary Information -- Funding -- References -- Large-scale integration of heterogeneous pharmacogenomic data for identifying drug mechanism of action -- 1. Introduction -- 2. Materials and Methods -- 2.1. Construction of heterogeneous drug-drug similarity networks -- 2.2. Integration of multi-omics data -- 2.3. Prediction of MoAs and drug targets -- 3. Results -- 3.1. Mania improves the quanti cation of drug-drug similarity -- 3.2. Mania achieves accurate prediction of drug MoAs and targets -- 3.3. Identification of functionally-enriched drug communities -- 3.4. Predictions of drugs for significantly mutated genes -- 4. Discussion -- References -- Chemical reaction vector embeddings: towards predicting drug metabolism in the human gut microbiome -- 1. Introduction -- 2. Methods -- 2.1. Data sources and processing -- 2.2. Constructing molecular vector space -- 2.3. Characterizing vector spaces -- 2.3.1. Molecule-level Analysis -- 2.3.2. Reaction-Level Analysis -- 2.4. Querying drug-metabolite pairs against reaction vectors -- 3. Results -- 3.1. Molecule-level analysis -- 3.2. Reaction-level analysis -- 3.3. Querying reaction vectors against drug-metabolite pairs -- 4. Discussion -- 5. Conclusion -- 6. Acknowledgments -- References -- Loss-of-function of neuroplasticity-related genes confers risk for human neurodevelopmental disorders -- 1. Introduction -- 2. Methods -- 2.1 Neuroplasticity signatures -- 2.2 Hospital and biobank cohort -- 2.3 Variant annotation -- 2.4 Neurodevelopmental disease phenotyping -- 2.5 LOF gene and disease association analysis -- 3. Results -- 3.1 Identifying putative neuroplasticity genes.
3.2 LOF variants in putative plasticity genes confer risk for neurodevelopmental and nervous system related disorders -- 4. Discussion -- 5. Conclusions and Future Directions -- 6. Acknowledgments -- References -- Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders -- 1. Introduction -- 2. Methods -- 2.1. Model Summary -- 2.2. Model Implementation -- 2.3. Parameter Selection -- 2.4. Input Data -- 2.5. Interpretation of Gene Weights -- 2.6. The Latent Space of Ovarian Cancer Subtypes -- 2.7. Enabling Exploration through Visualization -- 3. Results -- 3.1. Tumors were encoded in a lower dimensional space -- 3.2. Features represent biological signal -- 3.3. Interpolating the lower dimensional manifold of HGSC subtypes -- 4. Conclusion -- 5. Reproducibility -- Acknowledgments -- References -- Diffusion mapping of drug targets on disease signaling network elements reveals drug combination strategies -- 1. Introduction -- 2. Methods -- 3. Results -- 4. Discussion -- References -- CHALLENGES OF PATTERN RECOGNITION IN BIOMEDICAL DATA -- Session introduction -- 1. Introduction -- 2. Session Contributions -- 2.1 Network-based approaches -- 2.2 Machine learning approaches -- 2.2 Application of methods to identify patterns in EHR data -- 2.3 Applications in transcriptome and next-generation sequencing data -- 3. References -- Large-scale analysis of disease pathways in the human interactome -- 1. Introduction -- 2. Background and related work -- 3. Data -- 4. Connectivity of disease proteins in the PPI network -- 4.1. Proximity of disease proteins in the PPI network -- 4.2. Connections between PPI network structure and disease protein discovery -- 5. Higher-order connectivity of disease proteins in the PPI network -- 6. Prediction of disease proteins using higher-order PPI network structure -- 7. Conclusion.
Acknowledgments -- References -- Mapping patient trajectories using longitudinal extraction and deep learning in the MIMIC-III Critical Care Database -- 1. Introduction -- 2. Methods -- 2.1. Source Code and Analysis Availability -- 2.2. Care Event Extraction -- 2.3. Unsupervised learning to learn embeddings of extracted Care Events -- 2.4. Predicting Survival Using Care Events -- 3. Results -- 3.1. Treatment and Outcome Comparison -- 3.2. Unsupervised modeling of patient care events -- 3.3. Supervised prediction of patient survival -- 4. Discussion and Conclusions -- 5. Acknowledgments -- References -- OWL-NETS: Transforming OWL representations for improved network inference -- 1. Introduction -- 2. Methods -- 2.1. Biomedical Use Cases -- 2.2. Link Prediction Procedures -- 2.2.1. Evaluation of Link Prediction Algorithm Performance -- 2.2.2. Evaluation of Inferred Edges -- 3. Results -- 3.1. Comparison of Network Properties -- 3.2. Link Prediction Algorithm Performance -- 3.2.1. Inferred Edges -- 4. Discussion -- 5. Conclusions -- 6. Acknowledgments -- 7. Funding -- References -- Automated disease cohort selection using word embeddings from Electronic Health Records -- 1. Introduction -- 2. Methods and Materials -- 2.1. Research Cohort and Resource -- 2.2. Disease Phenotyping Algorithms -- 2.3. Phenotype and Patient Embedding -- 2.4. Evaluation Design -- 3. Results -- 3.1. Evaluating Performance of Embeddings -- 4. Discussion -- 4.1. Limitations and Future Directions -- 5. Acknowledgments -- References -- Functional network community detection can disaggregate and filter multiple underlying pathways in enrichment analyses -- 1. Introduction -- 2. Methods -- 2.1. General Approach -- 2.2. Control Arm -- 2.3. Experimental Arm -- 3. Results and Discussion -- 3.1. Simulation Study -- 3.2. HGSC Results -- 4. Conclusion -- 5. Acknowledgments.
6. Supplementary Material -- References -- An ultra-fast and scalable quantification pipeline for transposable elements from next generation sequencing data -- 1. Introduction -- 2. Methods -- 2.1. Transposable Element Library Preparation -- 2.2. Salmon quanti cation algorithm -- 2.3. Statistical tests -- 3. Results -- 3.1. Datasets -- 3.2. Computational experiment setup -- 3.3. SalmonTE guarantees a reliable TE expression estimation -- 3.4. SalmonTE shows a better scalability in the speed benchmark dataset -- 3.5. Discover differentially expressed TEs in ALS cell line -- 4. Conclusion -- Acknowledgments -- References -- Causal inference on electronic health records to assess blood pressure treatment targets: An application of the parametric g formula -- 1. Introduction -- 1.1. Global Burden of Hypertension -- 1.2. Challenges in Previous Efforts to Discover Optimal Target Blood Pressures -- 1.3. Causal Inference from Electronic Health Records As a Tool to Answer Difficult Clinical Questions -- 2. Methods -- 2.1. Data Acquisition from the Mount Sinai Hospital EHR -- 2.2. Problem setup -- 2.3. Parametric g formula -- 3. Results -- 3.1. Electronic Health Records Data -- 3.2. Survival time by goal blood pressure target -- 4. Conclusion -- References -- Data-driven advice for applying machine learning to bioinformatics problems -- 1. Introduction -- 2. Methods -- 3. Results -- 3.1. Algorithm Performance -- 3.2. Effect of Tuning and Model Selection -- 3.3. Algorithm Coverage -- 4. Discussion and Conclusions -- 5. Acknowledgments -- References -- Improving the explainability of Random Forest classifier - user centered approach -- 1. Introduction, Background and Motivation -- 1.1 Random Forest (RF) Classifiers -- 1.2 Related work on Explainability for Random Forest Classifiers -- 1.3 User-Centered Approach in Enhancing Random Forest Explainability - RFEX.
2. Case Study: RFEX Applied to Stanford FEATURE data.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
    Ortalama derecelendirme: 0.0 (0 oy)
Bu kayda ilişkin materyal yok

Intro -- Preface -- APPLICATIONS OF GENETICS, GENOMICS AND BIOINFORMATICS IN DRUG DISCOVERY -- Session introduction -- 1. Introduction -- 2. Session Contributions -- 2.1. Drug mechanisms of action and drug combinations -- 2.2. Drug metabolism and in silico drug screening -- 2.3. Disease genes and pathways -- 3. Acknowledgments -- References -- Characterization of drug-induced splicing complexity in prostate cancer cell line using long read technology -- Introduction -- Results -- Discussion -- Methods -- Supplementary -- Acknowledgements -- References -- Prediction of protein-ligand interactions from paired protein sequence motifs and ligand substructures -- 1. Introduction -- 1.1. Decreasing returns in drug discovery pipelines -- 1.2. Existing methods for prediction of protein-ligand interactions -- 2. Methods -- 2.1. Data set -- 2.2. Protein Featurization -- 2.3. Ligand Featurization -- 2.4. Boosting Model -- 2.5. Cross Validation Approaches -- 3. Results -- 3.1. Model Performance -- 3.2. Most predictive motif features -- 3.3. Known positive examples -- 3.3.1. Uricase - Uric acid -- 3.3.2. Chloramphenicol O-acetyltransferase - Chloramphenicol -- 3.3.3. Transthyretin -T4 -- 3.4. Interpreting ADT Paths -- 3.4.1. Path lengths -- 3.4.2. Protein kinase C - Phosphatidylserine -- 4. Discussion -- Acknowledgments -- References -- Cell-specific prediction and application of drug-induced gene expression profiles -- 1. Introduction -- 2. Methods -- 2.1. Notation and terminology -- 2.2. Data processing -- 2.3. The Drug Neighbor Profile Prediction algorithm -- 2.4. The Fast, Low-Rank Tensor Completion algorithm -- 2.5. Baseline averaging schemes -- 2.6. Cross-validation for predicting gene expression profiles -- 2.7. Predicting drug targets and ATC codes -- 3. Results -- 3.1. Overall accuracy -- 3.2. Tradeoffs in accuracy across drug-cell space.

3.3. Effects of varying observation density -- 3.4. Accuracy of differentially expressed genes -- 3.5. Analysis of cell-specificity -- 3.6. Utility of completed data for downstream prediction of drug properties -- 4. Discussion -- Supplementary Information -- Funding -- References -- Large-scale integration of heterogeneous pharmacogenomic data for identifying drug mechanism of action -- 1. Introduction -- 2. Materials and Methods -- 2.1. Construction of heterogeneous drug-drug similarity networks -- 2.2. Integration of multi-omics data -- 2.3. Prediction of MoAs and drug targets -- 3. Results -- 3.1. Mania improves the quanti cation of drug-drug similarity -- 3.2. Mania achieves accurate prediction of drug MoAs and targets -- 3.3. Identification of functionally-enriched drug communities -- 3.4. Predictions of drugs for significantly mutated genes -- 4. Discussion -- References -- Chemical reaction vector embeddings: towards predicting drug metabolism in the human gut microbiome -- 1. Introduction -- 2. Methods -- 2.1. Data sources and processing -- 2.2. Constructing molecular vector space -- 2.3. Characterizing vector spaces -- 2.3.1. Molecule-level Analysis -- 2.3.2. Reaction-Level Analysis -- 2.4. Querying drug-metabolite pairs against reaction vectors -- 3. Results -- 3.1. Molecule-level analysis -- 3.2. Reaction-level analysis -- 3.3. Querying reaction vectors against drug-metabolite pairs -- 4. Discussion -- 5. Conclusion -- 6. Acknowledgments -- References -- Loss-of-function of neuroplasticity-related genes confers risk for human neurodevelopmental disorders -- 1. Introduction -- 2. Methods -- 2.1 Neuroplasticity signatures -- 2.2 Hospital and biobank cohort -- 2.3 Variant annotation -- 2.4 Neurodevelopmental disease phenotyping -- 2.5 LOF gene and disease association analysis -- 3. Results -- 3.1 Identifying putative neuroplasticity genes.

3.2 LOF variants in putative plasticity genes confer risk for neurodevelopmental and nervous system related disorders -- 4. Discussion -- 5. Conclusions and Future Directions -- 6. Acknowledgments -- References -- Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders -- 1. Introduction -- 2. Methods -- 2.1. Model Summary -- 2.2. Model Implementation -- 2.3. Parameter Selection -- 2.4. Input Data -- 2.5. Interpretation of Gene Weights -- 2.6. The Latent Space of Ovarian Cancer Subtypes -- 2.7. Enabling Exploration through Visualization -- 3. Results -- 3.1. Tumors were encoded in a lower dimensional space -- 3.2. Features represent biological signal -- 3.3. Interpolating the lower dimensional manifold of HGSC subtypes -- 4. Conclusion -- 5. Reproducibility -- Acknowledgments -- References -- Diffusion mapping of drug targets on disease signaling network elements reveals drug combination strategies -- 1. Introduction -- 2. Methods -- 3. Results -- 4. Discussion -- References -- CHALLENGES OF PATTERN RECOGNITION IN BIOMEDICAL DATA -- Session introduction -- 1. Introduction -- 2. Session Contributions -- 2.1 Network-based approaches -- 2.2 Machine learning approaches -- 2.2 Application of methods to identify patterns in EHR data -- 2.3 Applications in transcriptome and next-generation sequencing data -- 3. References -- Large-scale analysis of disease pathways in the human interactome -- 1. Introduction -- 2. Background and related work -- 3. Data -- 4. Connectivity of disease proteins in the PPI network -- 4.1. Proximity of disease proteins in the PPI network -- 4.2. Connections between PPI network structure and disease protein discovery -- 5. Higher-order connectivity of disease proteins in the PPI network -- 6. Prediction of disease proteins using higher-order PPI network structure -- 7. Conclusion.

Acknowledgments -- References -- Mapping patient trajectories using longitudinal extraction and deep learning in the MIMIC-III Critical Care Database -- 1. Introduction -- 2. Methods -- 2.1. Source Code and Analysis Availability -- 2.2. Care Event Extraction -- 2.3. Unsupervised learning to learn embeddings of extracted Care Events -- 2.4. Predicting Survival Using Care Events -- 3. Results -- 3.1. Treatment and Outcome Comparison -- 3.2. Unsupervised modeling of patient care events -- 3.3. Supervised prediction of patient survival -- 4. Discussion and Conclusions -- 5. Acknowledgments -- References -- OWL-NETS: Transforming OWL representations for improved network inference -- 1. Introduction -- 2. Methods -- 2.1. Biomedical Use Cases -- 2.2. Link Prediction Procedures -- 2.2.1. Evaluation of Link Prediction Algorithm Performance -- 2.2.2. Evaluation of Inferred Edges -- 3. Results -- 3.1. Comparison of Network Properties -- 3.2. Link Prediction Algorithm Performance -- 3.2.1. Inferred Edges -- 4. Discussion -- 5. Conclusions -- 6. Acknowledgments -- 7. Funding -- References -- Automated disease cohort selection using word embeddings from Electronic Health Records -- 1. Introduction -- 2. Methods and Materials -- 2.1. Research Cohort and Resource -- 2.2. Disease Phenotyping Algorithms -- 2.3. Phenotype and Patient Embedding -- 2.4. Evaluation Design -- 3. Results -- 3.1. Evaluating Performance of Embeddings -- 4. Discussion -- 4.1. Limitations and Future Directions -- 5. Acknowledgments -- References -- Functional network community detection can disaggregate and filter multiple underlying pathways in enrichment analyses -- 1. Introduction -- 2. Methods -- 2.1. General Approach -- 2.2. Control Arm -- 2.3. Experimental Arm -- 3. Results and Discussion -- 3.1. Simulation Study -- 3.2. HGSC Results -- 4. Conclusion -- 5. Acknowledgments.

6. Supplementary Material -- References -- An ultra-fast and scalable quantification pipeline for transposable elements from next generation sequencing data -- 1. Introduction -- 2. Methods -- 2.1. Transposable Element Library Preparation -- 2.2. Salmon quanti cation algorithm -- 2.3. Statistical tests -- 3. Results -- 3.1. Datasets -- 3.2. Computational experiment setup -- 3.3. SalmonTE guarantees a reliable TE expression estimation -- 3.4. SalmonTE shows a better scalability in the speed benchmark dataset -- 3.5. Discover differentially expressed TEs in ALS cell line -- 4. Conclusion -- Acknowledgments -- References -- Causal inference on electronic health records to assess blood pressure treatment targets: An application of the parametric g formula -- 1. Introduction -- 1.1. Global Burden of Hypertension -- 1.2. Challenges in Previous Efforts to Discover Optimal Target Blood Pressures -- 1.3. Causal Inference from Electronic Health Records As a Tool to Answer Difficult Clinical Questions -- 2. Methods -- 2.1. Data Acquisition from the Mount Sinai Hospital EHR -- 2.2. Problem setup -- 2.3. Parametric g formula -- 3. Results -- 3.1. Electronic Health Records Data -- 3.2. Survival time by goal blood pressure target -- 4. Conclusion -- References -- Data-driven advice for applying machine learning to bioinformatics problems -- 1. Introduction -- 2. Methods -- 3. Results -- 3.1. Algorithm Performance -- 3.2. Effect of Tuning and Model Selection -- 3.3. Algorithm Coverage -- 4. Discussion and Conclusions -- 5. Acknowledgments -- References -- Improving the explainability of Random Forest classifier - user centered approach -- 1. Introduction, Background and Motivation -- 1.1 Random Forest (RF) Classifiers -- 1.2 Related work on Explainability for Random Forest Classifiers -- 1.3 User-Centered Approach in Enhancing Random Forest Explainability - RFEX.

2. Case Study: RFEX Applied to Stanford FEATURE data.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

yorum yazmak için.

Ziyaretçi Sayısı

Destekleyen Koha