Biocomputing 2012 - Proceedings Of The Pacific Symposium.

Yazar:Klein, Teri E
Katkıda bulunan(lar):Jung, Tiffany A | Hunter, Lawrence | Dunker, A Keith | Altman, Russ B
Materyal türü: KonuKonuYayıncı: Singapore : World Scientific Publishing Company, 2011Telif hakkı tarihi: �2012Tanım: 1 online resource (455 pages)İçerik türü:text Ortam türü:computer Taşıyıcı türü: online resourceISBN: 9789814366496Tür/Form:Electronic books.Ek fiziksel biçimler:Print version:: Biocomputing 2012 - Proceedings Of The Pacific SymposiumÇevrimiçi kaynaklar: Click to View
İçindekiler:
Intro -- Contents -- Preface -- IDENTIFICATION OF ABERRANT PATHWAY AND NETWORK ACTIVITY FROM HIGH-THROUGHPUT DATA -- Session Introduction Rachel Karchin, Michael F. Ochs, Joshua M. Stuart, and Joel S. Bader -- Introduction -- Genetic interaction networks in model organisms -- Human data and local subnetworks -- Converging problems and challenges -- References -- SSLPred : Predicting Synthetic Sickness Lethality Nirmalya Bandyopadhyayy, Sanjay Ranka, and Tamer Kahveci -- 1. Introduction -- 2. Background -- 3. Methods -- 3.1. Problem Formulation and Notation -- 3.2. Between Pathway Conjectures -- 3.3. Regression based solution -- 4. Experiments -- 4.1. Datasets -- 4.2. Comparison with Hescott's Method -- 5. Conclusion -- References -- Predicting the Effects of Copy-Number Variation in Double and Triple Mutant Combinations Gregory W. Carter, Michelle Hays, Song Li, and Timothy Galitski -- 1. Introduction -- 2. Network Model Inference -- 2.1.1. Yeast Gene Expression Profiling -- 2.1.2. Singular Value Decomposition Analysis -- 2.1.3. Genetic Influences Decomposition -- 2.2. Predictions and Validation for a Multicopy Perturbation -- 2.2.1. Prediction for Multi-Copy Strains -- 2.2.2. Experimental Test of Predictions -- 3. Discussion and Conclusions -- 4. Supplementary Material -- 5. Acknowledgments -- References -- Integrative Network Analysis to Identify Aberrant Pathway Networks in Ovarian Cancer Li Chen, Jianhua Xuan, Jinghua Gu, Yue Wang, Li Chen, Zhen Zhang, Tian-Li Wang, and Ie-Ming Shih -- 1. Introduction -- 2. Materials and method -- 2.1. Integrative framework -- 2.2. Data description -- 2.3. DNA copy number consensus region detection -- 2.4. Network identification by bootstrapping MRF (BMRF) -- 2.5. Network constrained support vector machines (NetSVM) -- 2.6. Classification performance merits and survival analysis -- 3. Results and discussion.
4. Conclusion -- 5. Acknowledgments -- References -- Role of Synthetic Genetic Interactions in Understanding Functional Interactions Among Pathways Shahin Mohammadi, Giorgos Kollias, and Ananth Grama -- 1. Introduction -- 2. Methods -- 2.1. Notations -- 2.2. Performance of local methods for predicting functional similarity of gene pairs -- 2.3. Constructing the neighborhood overlap graph (NOG) -- 2.4. Identifying interaction ports and inferring cross-pathway dependencies -- 3. Results -- 3.1. Datasets -- 3.1.1. Genetic interaction network -- 3.1.2. Functional annotations -- 3.1.3. Availability -- 3.2. Similarity of genetic neighborhood as a predictor of functional similarity -- 3.3. Constructing KEGG crosstalk map -- 4. Discussion -- 5. Acknowledgments -- References -- Discovery of Mutated Subnetworks Associated with Clinical Data in Cancer Fabio Vandin, Patrick Clay, Eli Upfal, and Benjamin J. Raphael -- 1. Introduction -- 2. Methods -- 2.1. Generalized HotNet -- 2.2. Adaptation to Clinical Data -- 2.2.1. Gene Scores -- 2.2.2. Selection of parameters t and -- 2.2.3. The Null Hypothesis Distribution -- 3. Results -- 3.1. Simulated data -- 3.2. Ovarian TCGA data -- 4. Discussion -- 5. Acknowledgements -- References -- INTRINSICALLY DISORDERED PROTEINS: ANALYSIS, PREDICTION, SIMULATION, AND BIOLOGY -- Session Introduction Jianhan Chen, Jianlin Cheng, and A. Keith Dunker -- 1. Introduction -- 2. Papers in this Session -- Analysis of IDPs' function and evolution -- Simulation of IDPs' conformation -- Prediction of IDPs -- Acknowledgements -- Quasi-Anharmonic Analysis Reveals Intermediate States in the Nuclear Co-Activator Receptor Binding Domain Ensemble Virginia M. Burger, Arvind Ramanathan, Andrej J. Savol, Christopher B. Stanly, Pratul K. Agarwal, and Chakra S. Chennubhotla -- 1. Introduction -- 2. Approach -- 3. Molecular Simulations for NCBD.
4. dQAA: Quasi-anharmonic analysis in the dihedral angle space -- 5. Hierarchical clustering in the dQAA-space to identify meta-stable states -- 6. Intermediate states of ligand-free NCBD access ligand-bound conformations -- 7. Conclusions and Future Work -- References -- Efficient Construction of Disordered Protein Ensembles in a Bayesian Framework with Optimal Selection of Conformations Charles K. Fisher, Orly Ullman, and Collin M. Stultz -- 1. Introduction -- 2. Theory -- 2.1. Optimal Structure Selection -- 2.2. Variational Bayesian Weighting -- 2.3. Variational Bayes with Structure Selection -- 2.3. Approximate Confidence Intervals -- 3. Results and Discussion -- 3.1. Validation with Reference Ensembles -- 3.2. (Sa(B-Synuclein Ensemble -- 4. Conclusions -- 5. Acknowledgements -- References -- Correlation Between Posttranslational Modification and Intrinsic Disorder in Protein Jianjiong Gao and Dong Xu -- 1. Background -- 2. Results -- 2.1. Correlation of PTM sites and their predicted disorder scores -- 2.2. Correlation of PTM sites and their spatial fluctuations in NMR 3-D structures -- 2.3. Spatial fluctuation changes in 3-D structure due to PTM -- 3. Discussion -- Acknowledgments -- References -- Intrinsic Disorder Within and Flanking the DNA-Binding Domains of Human Transcription Factors Xin Guo, Martha L. Bulyk, and Alexander J. Hartemink -- 1. Introduction -- 2. Materials and Methods -- 2.1. Constructing the TF and non-TF control sets of proteins -- 2.2. Comparing the TF and non-TF control sets of proteins -- 2.3. Identifying DNA-binding domains (DBDs) and their locations within proteins -- 2.4. Predicting intrinsically disordered regions (IDRs) and their locations within proteins using multiple existing methods -- 2.5. Defining disorder features: spatial relationships of IDRs relative to DBDs within TFs.
2.6. Calculating statistical significance of disorder features -- 3. Results -- 3.1. Comparing the three methods for predicting IDRs within proteins -- 3.2. Assessing significance of order or disorder within and anking human TF DBDs -- 3.3. Investigating detailed spatial relationships of IDRs relative to DBDs within TFs -- 3.4. Analyzing spatial relationships for some DBD classes prevalent in human TFs -- 3.4.1. Zinc ngers -- 3.4.2. Homeobox -- 3.4.3. HLH -- 4. Discussion -- 5. Acknowledgments -- References -- Intrinsic Protein Disorder and Protein-Protein Interactions Wei-Lun Hsu, Christopher Oldfield, Jingwei Meng, Fei Huang, Bin Xue, Vladimir N. Uversky, Pedro Romero, and A. Keith Dunker -- 1. Introduction -- 2. Results -- 2.1 Disordered hub dataset -- 2.2 Functional consequences of MoRF (or ELM) binding -- 2.3 Binding to multiple partners, conservation at structure-matching sites -- 3. Discussion -- 4. Methods -- 4.1 Disordered hub dataset -- 4.2 Sequence and Structure analysis -- References -- Subclassifying Disordered Proteins by the CH-CDF Plot Method Fei Huang, Christopher Oldfield, Jingwei Meng, Wei-lun Hsu, Bin Xue, Vladimir N. Uversky, Pedro Romero, and A. Keith Dunker -- 1. Introduction -- 2. Results -- 2.1 CH-CDF plot -- 2.2 PDB coverage -- 2.3 Sequence window CH-CDF analysis -- 2.4 Match PDB coverage to disorder prediction -- 2.5 Function analysis for each quadrant -- 3. Discussion -- 3.1 Overview -- 3.2 Structural Partitioning by the CH-CDF plot -- 3.2 The rare protein quadrant (Q1) -- 3.3 Disorder subtypes and IDP functions -- 4. Methods -- 4.1 Protein data -- 4.2 PDB Coverage -- 4.2 GO term analysis -- References -- Coevolved Residues and the Functional Association for Intrinsically Disordered Protein Chan-Seok Jeong and Dongsup Kim -- 1. Introduction -- 2. Materials and methods -- 2.1. Data set.
2.2. Multiple sequence alignment construction -- 2.3. Coevolution estimation -- 2.4. Sequence conservation estimation -- 2.5. Disorder conservation estimation -- 2.6. Functional categories -- 3. Results -- 3.1. Distribution of coevolved residues for disordered proteins -- 3.2. Relationship between coevolution and functions -- 4. Discussion -- Acknowledgments -- References -- Cryptic Disorder: An Order-Disorder Transformation Regulates the Function of Nucleophosmin Diana M. Mitrea and Richard W. Kriwacki -- 1. Biological Function and Structural Features of Npm -- 2. Alteration of the electrostatic features of Npm-N through phosphorylation -- 3. In Silico site-directed mutagenesis -- 4. Probing for structural strain in Npm-N -- 5. Mechanistic insights on Npm's order-disorder polymorphism -- 6. Materials and Methods -- References -- Functional Annotation of Intrinsically Disordered Domains by Their Amino Acid Content Using IDD Navigator Ashwini Patil, Shunsuke Teraguchi, Huy Dinh, Kenta Nakai, and Daron M Standley -- 1. Introduction Intrinsically disordered domains -- 2. Methodology -- 2.1. Preparation of IDD dataset -- 2.2. Similarity scores -- 2.2.1. Similarity score based on Euclidean distance -- 2.2.2. BLAST score -- 2.3. Pfam domain and Gene Ontology term prediction -- 2.4. Evaluation of function prediction -- 2.5. Web server -- 3. Results and Discussion -- 3.1 IDD Navigator Function prediction -- 3.2 Comparing different methods in IDD Navigator -- 3.3 Function prediction for IDD clusters -- 3.4 Case Studies -- 3.4.1 GRA15 from T. gondii -- 3.4.2 Cyclon from M. musculus -- 3.4.3 STIM1 from M. musculus -- 3.4.4 ROP16 from T. gondii -- 4. Conclusions -- 5. Acknowledgements -- References -- On the Complementarity of the Consensus-Based Disorder Prediction Zhenling Peng and Lukasz Kurgan -- 1. Introduction -- 2. Methods.
2.1. Considered disorder predictors.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
    Ortalama derecelendirme: 0.0 (0 oy)
Bu kayda ilişkin materyal yok

Intro -- Contents -- Preface -- IDENTIFICATION OF ABERRANT PATHWAY AND NETWORK ACTIVITY FROM HIGH-THROUGHPUT DATA -- Session Introduction Rachel Karchin, Michael F. Ochs, Joshua M. Stuart, and Joel S. Bader -- Introduction -- Genetic interaction networks in model organisms -- Human data and local subnetworks -- Converging problems and challenges -- References -- SSLPred : Predicting Synthetic Sickness Lethality Nirmalya Bandyopadhyayy, Sanjay Ranka, and Tamer Kahveci -- 1. Introduction -- 2. Background -- 3. Methods -- 3.1. Problem Formulation and Notation -- 3.2. Between Pathway Conjectures -- 3.3. Regression based solution -- 4. Experiments -- 4.1. Datasets -- 4.2. Comparison with Hescott's Method -- 5. Conclusion -- References -- Predicting the Effects of Copy-Number Variation in Double and Triple Mutant Combinations Gregory W. Carter, Michelle Hays, Song Li, and Timothy Galitski -- 1. Introduction -- 2. Network Model Inference -- 2.1.1. Yeast Gene Expression Profiling -- 2.1.2. Singular Value Decomposition Analysis -- 2.1.3. Genetic Influences Decomposition -- 2.2. Predictions and Validation for a Multicopy Perturbation -- 2.2.1. Prediction for Multi-Copy Strains -- 2.2.2. Experimental Test of Predictions -- 3. Discussion and Conclusions -- 4. Supplementary Material -- 5. Acknowledgments -- References -- Integrative Network Analysis to Identify Aberrant Pathway Networks in Ovarian Cancer Li Chen, Jianhua Xuan, Jinghua Gu, Yue Wang, Li Chen, Zhen Zhang, Tian-Li Wang, and Ie-Ming Shih -- 1. Introduction -- 2. Materials and method -- 2.1. Integrative framework -- 2.2. Data description -- 2.3. DNA copy number consensus region detection -- 2.4. Network identification by bootstrapping MRF (BMRF) -- 2.5. Network constrained support vector machines (NetSVM) -- 2.6. Classification performance merits and survival analysis -- 3. Results and discussion.

4. Conclusion -- 5. Acknowledgments -- References -- Role of Synthetic Genetic Interactions in Understanding Functional Interactions Among Pathways Shahin Mohammadi, Giorgos Kollias, and Ananth Grama -- 1. Introduction -- 2. Methods -- 2.1. Notations -- 2.2. Performance of local methods for predicting functional similarity of gene pairs -- 2.3. Constructing the neighborhood overlap graph (NOG) -- 2.4. Identifying interaction ports and inferring cross-pathway dependencies -- 3. Results -- 3.1. Datasets -- 3.1.1. Genetic interaction network -- 3.1.2. Functional annotations -- 3.1.3. Availability -- 3.2. Similarity of genetic neighborhood as a predictor of functional similarity -- 3.3. Constructing KEGG crosstalk map -- 4. Discussion -- 5. Acknowledgments -- References -- Discovery of Mutated Subnetworks Associated with Clinical Data in Cancer Fabio Vandin, Patrick Clay, Eli Upfal, and Benjamin J. Raphael -- 1. Introduction -- 2. Methods -- 2.1. Generalized HotNet -- 2.2. Adaptation to Clinical Data -- 2.2.1. Gene Scores -- 2.2.2. Selection of parameters t and -- 2.2.3. The Null Hypothesis Distribution -- 3. Results -- 3.1. Simulated data -- 3.2. Ovarian TCGA data -- 4. Discussion -- 5. Acknowledgements -- References -- INTRINSICALLY DISORDERED PROTEINS: ANALYSIS, PREDICTION, SIMULATION, AND BIOLOGY -- Session Introduction Jianhan Chen, Jianlin Cheng, and A. Keith Dunker -- 1. Introduction -- 2. Papers in this Session -- Analysis of IDPs' function and evolution -- Simulation of IDPs' conformation -- Prediction of IDPs -- Acknowledgements -- Quasi-Anharmonic Analysis Reveals Intermediate States in the Nuclear Co-Activator Receptor Binding Domain Ensemble Virginia M. Burger, Arvind Ramanathan, Andrej J. Savol, Christopher B. Stanly, Pratul K. Agarwal, and Chakra S. Chennubhotla -- 1. Introduction -- 2. Approach -- 3. Molecular Simulations for NCBD.

4. dQAA: Quasi-anharmonic analysis in the dihedral angle space -- 5. Hierarchical clustering in the dQAA-space to identify meta-stable states -- 6. Intermediate states of ligand-free NCBD access ligand-bound conformations -- 7. Conclusions and Future Work -- References -- Efficient Construction of Disordered Protein Ensembles in a Bayesian Framework with Optimal Selection of Conformations Charles K. Fisher, Orly Ullman, and Collin M. Stultz -- 1. Introduction -- 2. Theory -- 2.1. Optimal Structure Selection -- 2.2. Variational Bayesian Weighting -- 2.3. Variational Bayes with Structure Selection -- 2.3. Approximate Confidence Intervals -- 3. Results and Discussion -- 3.1. Validation with Reference Ensembles -- 3.2. (Sa(B-Synuclein Ensemble -- 4. Conclusions -- 5. Acknowledgements -- References -- Correlation Between Posttranslational Modification and Intrinsic Disorder in Protein Jianjiong Gao and Dong Xu -- 1. Background -- 2. Results -- 2.1. Correlation of PTM sites and their predicted disorder scores -- 2.2. Correlation of PTM sites and their spatial fluctuations in NMR 3-D structures -- 2.3. Spatial fluctuation changes in 3-D structure due to PTM -- 3. Discussion -- Acknowledgments -- References -- Intrinsic Disorder Within and Flanking the DNA-Binding Domains of Human Transcription Factors Xin Guo, Martha L. Bulyk, and Alexander J. Hartemink -- 1. Introduction -- 2. Materials and Methods -- 2.1. Constructing the TF and non-TF control sets of proteins -- 2.2. Comparing the TF and non-TF control sets of proteins -- 2.3. Identifying DNA-binding domains (DBDs) and their locations within proteins -- 2.4. Predicting intrinsically disordered regions (IDRs) and their locations within proteins using multiple existing methods -- 2.5. Defining disorder features: spatial relationships of IDRs relative to DBDs within TFs.

2.6. Calculating statistical significance of disorder features -- 3. Results -- 3.1. Comparing the three methods for predicting IDRs within proteins -- 3.2. Assessing significance of order or disorder within and anking human TF DBDs -- 3.3. Investigating detailed spatial relationships of IDRs relative to DBDs within TFs -- 3.4. Analyzing spatial relationships for some DBD classes prevalent in human TFs -- 3.4.1. Zinc ngers -- 3.4.2. Homeobox -- 3.4.3. HLH -- 4. Discussion -- 5. Acknowledgments -- References -- Intrinsic Protein Disorder and Protein-Protein Interactions Wei-Lun Hsu, Christopher Oldfield, Jingwei Meng, Fei Huang, Bin Xue, Vladimir N. Uversky, Pedro Romero, and A. Keith Dunker -- 1. Introduction -- 2. Results -- 2.1 Disordered hub dataset -- 2.2 Functional consequences of MoRF (or ELM) binding -- 2.3 Binding to multiple partners, conservation at structure-matching sites -- 3. Discussion -- 4. Methods -- 4.1 Disordered hub dataset -- 4.2 Sequence and Structure analysis -- References -- Subclassifying Disordered Proteins by the CH-CDF Plot Method Fei Huang, Christopher Oldfield, Jingwei Meng, Wei-lun Hsu, Bin Xue, Vladimir N. Uversky, Pedro Romero, and A. Keith Dunker -- 1. Introduction -- 2. Results -- 2.1 CH-CDF plot -- 2.2 PDB coverage -- 2.3 Sequence window CH-CDF analysis -- 2.4 Match PDB coverage to disorder prediction -- 2.5 Function analysis for each quadrant -- 3. Discussion -- 3.1 Overview -- 3.2 Structural Partitioning by the CH-CDF plot -- 3.2 The rare protein quadrant (Q1) -- 3.3 Disorder subtypes and IDP functions -- 4. Methods -- 4.1 Protein data -- 4.2 PDB Coverage -- 4.2 GO term analysis -- References -- Coevolved Residues and the Functional Association for Intrinsically Disordered Protein Chan-Seok Jeong and Dongsup Kim -- 1. Introduction -- 2. Materials and methods -- 2.1. Data set.

2.2. Multiple sequence alignment construction -- 2.3. Coevolution estimation -- 2.4. Sequence conservation estimation -- 2.5. Disorder conservation estimation -- 2.6. Functional categories -- 3. Results -- 3.1. Distribution of coevolved residues for disordered proteins -- 3.2. Relationship between coevolution and functions -- 4. Discussion -- Acknowledgments -- References -- Cryptic Disorder: An Order-Disorder Transformation Regulates the Function of Nucleophosmin Diana M. Mitrea and Richard W. Kriwacki -- 1. Biological Function and Structural Features of Npm -- 2. Alteration of the electrostatic features of Npm-N through phosphorylation -- 3. In Silico site-directed mutagenesis -- 4. Probing for structural strain in Npm-N -- 5. Mechanistic insights on Npm's order-disorder polymorphism -- 6. Materials and Methods -- References -- Functional Annotation of Intrinsically Disordered Domains by Their Amino Acid Content Using IDD Navigator Ashwini Patil, Shunsuke Teraguchi, Huy Dinh, Kenta Nakai, and Daron M Standley -- 1. Introduction Intrinsically disordered domains -- 2. Methodology -- 2.1. Preparation of IDD dataset -- 2.2. Similarity scores -- 2.2.1. Similarity score based on Euclidean distance -- 2.2.2. BLAST score -- 2.3. Pfam domain and Gene Ontology term prediction -- 2.4. Evaluation of function prediction -- 2.5. Web server -- 3. Results and Discussion -- 3.1 IDD Navigator Function prediction -- 3.2 Comparing different methods in IDD Navigator -- 3.3 Function prediction for IDD clusters -- 3.4 Case Studies -- 3.4.1 GRA15 from T. gondii -- 3.4.2 Cyclon from M. musculus -- 3.4.3 STIM1 from M. musculus -- 3.4.4 ROP16 from T. gondii -- 4. Conclusions -- 5. Acknowledgements -- References -- On the Complementarity of the Consensus-Based Disorder Prediction Zhenling Peng and Lukasz Kurgan -- 1. Introduction -- 2. Methods.

2.1. Considered disorder predictors.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

yorum yazmak için.

Ziyaretçi Sayısı

Destekleyen Koha