Biological Information.

Yazar:Sanford, John C
Katkıda bulunan(lar):Marks Ii, Robert J | Behe, Michael J | Dembski, William A | Gordon, Bruce L
Materyal türü: KonuKonuYayıncı: Singapore : World Scientific Publishing Company, 2013Telif hakkı tarihi: �2013Tanım: 1 online resource (584 pages)İçerik türü:text Ortam türü:computer Taşıyıcı türü: online resourceISBN: 9789814508728Tür/Form:Electronic books.Ek fiziksel biçimler:Print version:: Biological Information: New Perspectives - Proceedings Of The SymposiumÇevrimiçi kaynaklar: Click to View
İçindekiler:
Intro -- Contents -- Title Page -- Acknowledgements -- General Introduction -- References and Notes -- Section One Information Theory &amp -- Biology: Introductory Comments Robert J. Marks II -- 1.1.1 Biological Information - What is It? Werner Gitt, Robert Compton and Jorge Fernandez -- Introduction -- Defining Subsets of Information -- Distinguishing Attributes of Information -- Code plus syntax -- Meaning -- Expected Action -- Intended Purpose -- The Definition of Universal Information -- The Nature of Universal Information -- Does Biological Life Contain Universal Information? -- Code plus Syntax -- Abstract Meaning -- The Expected Acti on -- The Intended Purpose -- UI Senders, Transmitters and Receivers -- The Existence, Validity and Significance of Universal Information -- Conclusion -- References -- 1.1.2 A General Theory of Information Cost Incurred by Successful Search William A. Dembski, Winston Ewert and Robert J. Marks II -- 1. The Search Matrix -- Example 1.1: Uniform random sampling with perfect knowledge -- Example 1.2: Uniform random sampling with zero knowledge -- Example 1.3: Uniform random sampling with partial knowledge -- Example 1.4: Smooth gradient fitness with single peak -- 2. General Targeted Search -- 3. Search Examples -- Example 3.1: Uniform random sampling with perfect knowledge and without replacement -- Example 3.2: Easter egg hunt -- Example 3.3: Competitive search -- Example 3.4: Tournament play -- Example 3.5: Populati on search -- 4. Information and Efficiency Measures -- 5. Liftings and Lowerings -- 6. Conservation of Information - The Uniform Case -- 7. Conservation of Information - The General Case -- 8. Regulating the Information Industry -- Acknowledgment -- References and Notes -- 1.1.3 Pragmatic Information John W. Oller, Jr. -- Introduction -- Ranking in Sign Systems.
Tampering with the Sign Architecture -- Pragmatic Mapping -- The Vanishing Ratio of Meaningful to Random Strings -- The Logical Sequence for Discovering Meaning -- Conclusions -- Addendum -- Acknowledgments -- References -- 1.2.1 Limits of Chaos and Progress in Evolutionary Dynamics William F. Basener -- 1. Introduction -- 1.1 Goals and Perspective. -- 1.2 History and Applicati on of Topology and Dynamical Systems -- 1.3 General Questions in Evolutionary Models -- 2. Evolutionary Models and Dynamical Systems -- 2.1. Simple Populati on Models -- 2.2. Simple Mutati on-Selection Models -- 2.3. Population Models with Mutati on-Selection -- 3. Chaos and Recurrent Behavior -- 4. Conclusions -- References -- 1.2.2 Tierra: The Character of Adaptation Winston Ewert, William A. Dembski and Robert J. Marks II -- 1. Introduction -- 2. Description of Tierra -- 2.1 Programs -- 2.2 Ancestor -- 2.3 Parallel Tierra -- 2.4 Network Tierra -- 3. Looking for complexity -- 4. Examples -- 4.1 Parasite -- 4.2 Immunity -- 4.3 Hyper-parasites -- 4.4 Social behavior -- 4.5 Cheater -- 4.6 Shorter program -- 4.7 Loop unrolling -- 4.8 Parallel code -- 4.9 Recap -- 5. Summary -- Acknowledgments -- 6. Appendix: Tierra program comparisons -- 6.1 Ancestor and parasite -- 6.2 Immunity -- 6.3 Ancestor and hyper-parasite -- 6.4 Hyper-parasite and social program -- 6.5 Social program and cheater -- 6.6 Ancestor and short code -- 6.7 Loop unrolling -- 6.8 Parallel -- References -- 1.2.3 Multiple Overlapping Genetic Codes Profoundly Reduce the Probability of Beneficial Mutation George Monta�nez, Robert J. Marks II, Jorge Fernandez and John C. Sanford -- 1. Introduction -- 2. Method and Results -- 2.1 The Model -- 2.2 Analyses -- 2.2.1 First Level of Analysis: -- 2.2.2 Second Level of Analysis: -- 2.2.3 Third Level of Analysis: -- 2.2.4 Summary of Results: -- 3. Discussion.
3.1 Possible Objections -- 4. Conclusions -- References -- 1.3.1 Entropy, Evolution and Open Systems Granville Sewell -- 1. Compensation -- 2. The Equations of Entropy Change -- 3. A Tautology -- 4. The Common Sense Law of Physics -- 5. Conclusions -- 6. References -- 1.3.2 Information and Thermodynamics in Living Systems Andy C. McIntosh -- 1. Introduction -- 2. Biological information storage and retrieval - thermodynamic issues -- 2.1 Thermodynamics and isolated systems -- 2.2 Non isolated systems -- 2.2.1 Entropy deficiency -- 2.2.2 Open systems and machinery -- 2.3 Can negative entropy be harvested from somewhere else? -- 3. Free energy and Machines -- 3.1 Free energy -- 3.2 Machines and raised free energies -- 3.3 Thermodynamic law of non-isolated systems -- 3.4 Crystal formation -- 3.5 Bio polymer formation -- 4. A different paradigm: Thermodynamics constrained by functional information -- 4.1 A different paradigm: Information definitions -- 4.2 A different paradigm: principles of information and thermodynamics -- 4.2.1 Principles of information exchange -- 4.2.2 Principles of information interaction with energy and matter in biological systems -- 5. Conclusions -- Acknowledgement -- References -- Section Two Biological Information and Genetic Theory: Introductory Comments John C. Sanford -- 2.1 Not Junk After All: Non-Protein-Coding DNA Carries Extensive Biological Information Jonathan Wells -- 1. Introduction -- 2. Widespread Transcription Into RNAs That Are Probably Functional -- 3. Direct Evidence for Some Specific Functions of Non-Protein- Coding RNAs -- 4. Functions of Non-Protein-Coding DNA That Are Not Determined by Precise Nucleotide Sequences -- 4.1 The Length of DNA Sequences -- 4.2 Chromatin Organization -- 4.3 Chromosome Arrangement in the Nucleus -- 5. Conclusion: Multiple Levels of Biological Information -- Addendum.
Acknowledgments -- References -- 2.2 Can Purifying Natural Selection Preserve Biological Information? Paul Gibson, John R. Baumgardner, Wesley H. Brewer and John C. Sanford -- Introduction -- Results -- Conditions allowing perfect purifying selection -- Effects of high mutati on rate and mutation-mutation interference -- Effects of environmental variance -- Effects of varying degrees of randomness within the selecti on process -- Effects of minimal levels of noise from multiple sources -- Effects of larger population size, more time, and more recombination -- Experiments using the latest estimate of human mutation rate and fitness effect distribution -- Discussion -- General Implications -- Robustness of Findings -- Potential Effects of Other Factors -- Conclusion -- Materials and Methods -- Acknowledgments -- References -- Appendix 1: Key parameter settings and their basis -- 2.3 Selection Threshold Severely Constrains Capture of Beneficial Mutations John C. Sanford, John R. Baumgardner and Wesley H. Brewer -- Introduction -- Results -- Conditions allowing optimal selection for beneficial mutations -- Effect of environmental variance -- Introduction of probability into the selection process -- Effect of high mutation rate and consequent selecti on interference among beneficial mutations -- Effect of extremely beneficial mutations -- Effect of adding deleterious mutations -- Effect of multiple sources of noise, at minimal levels -- Modest levels of noise with a larger population -- The effect of time on STd and STb values -- Discussion -- Can low-impact beneficial mutations contribute to genome building? -- Can high-impact beneficial mutations explain the origin of the genome? -- Can equal-but-opposite compensating mutations stop degeneration? -- Can high-impact compensating beneficial mutations stop degeneration?.
Might beneficial mutations be common? -- Possible criticisms -- Concluding comments -- Methods -- Addendum - -- Acknowledgments -- References -- Appendix I: Key parameter settings and their justification: -- 2.4 Using Numerical Simulation to Test the "Mutation-Count" Hypothesis Wesley H. Brewer, John R. Baumgardner and John C. Sanford -- Introduction -- Methods -- Results -- Discussion -- Acknowledgements -- References -- 2.5 Can Synergistic Epistasis Halt Mutation Accumulation? Results from Numerical Simulation John R. Baumgardner, Wesley H. Brewer and John C. Sanford -- Introduction -- Methods -- Modeling general epistasis -- Modeling additive interactions -- Modeling multi plicative interactions -- Modeling synergistic epistasis -- Results -- Preliminaries -- Large SE effects and modest selection pressure -- Extreme SE effects and moderate selection pressure -- Extremely exaggerated SE effects and extreme selection pressure -- Discussion -- The importance of genic interactions -- The significance of SE -- Testing the limits of SE -- Modeling SE realistically -- Pros and cons of the SE hypothesis -- Conclusions -- References -- 2.6 Computational Evolution Experiments Reveal a Net Loss of Genetic Information Despite Selection Chase W. Nelson and John C. Sanford -- Introduction -- Mendel's Accountant -- Avida -- Selection threshold and genetic entropy -- Methods -- Experiments using Mendel's Accountant -- Experiments using Avida -- Results -- Experiments using Mendel's Accountant -- Experiments using Avida -- Discussion -- Selection threshold and genetic entropy -- High-impact beneficial mutations -- Distribution of mutational fitness effects -- Junk DNA -- Irreducible complexity and the waiting time to beneficial mutation -- Reductive evolution -- Conclusions -- Addendum -- Acknowledgments -- References.
2.7 Information Loss: Potential for Accelerating Natural Genetic Attenuation of RNA Viruses Wesley H. Brewer, Franzine D. Smith and John C. Sanford.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
    Ortalama derecelendirme: 0.0 (0 oy)
Bu kayda ilişkin materyal yok

Intro -- Contents -- Title Page -- Acknowledgements -- General Introduction -- References and Notes -- Section One Information Theory &amp -- Biology: Introductory Comments Robert J. Marks II -- 1.1.1 Biological Information - What is It? Werner Gitt, Robert Compton and Jorge Fernandez -- Introduction -- Defining Subsets of Information -- Distinguishing Attributes of Information -- Code plus syntax -- Meaning -- Expected Action -- Intended Purpose -- The Definition of Universal Information -- The Nature of Universal Information -- Does Biological Life Contain Universal Information? -- Code plus Syntax -- Abstract Meaning -- The Expected Acti on -- The Intended Purpose -- UI Senders, Transmitters and Receivers -- The Existence, Validity and Significance of Universal Information -- Conclusion -- References -- 1.1.2 A General Theory of Information Cost Incurred by Successful Search William A. Dembski, Winston Ewert and Robert J. Marks II -- 1. The Search Matrix -- Example 1.1: Uniform random sampling with perfect knowledge -- Example 1.2: Uniform random sampling with zero knowledge -- Example 1.3: Uniform random sampling with partial knowledge -- Example 1.4: Smooth gradient fitness with single peak -- 2. General Targeted Search -- 3. Search Examples -- Example 3.1: Uniform random sampling with perfect knowledge and without replacement -- Example 3.2: Easter egg hunt -- Example 3.3: Competitive search -- Example 3.4: Tournament play -- Example 3.5: Populati on search -- 4. Information and Efficiency Measures -- 5. Liftings and Lowerings -- 6. Conservation of Information - The Uniform Case -- 7. Conservation of Information - The General Case -- 8. Regulating the Information Industry -- Acknowledgment -- References and Notes -- 1.1.3 Pragmatic Information John W. Oller, Jr. -- Introduction -- Ranking in Sign Systems.

Tampering with the Sign Architecture -- Pragmatic Mapping -- The Vanishing Ratio of Meaningful to Random Strings -- The Logical Sequence for Discovering Meaning -- Conclusions -- Addendum -- Acknowledgments -- References -- 1.2.1 Limits of Chaos and Progress in Evolutionary Dynamics William F. Basener -- 1. Introduction -- 1.1 Goals and Perspective. -- 1.2 History and Applicati on of Topology and Dynamical Systems -- 1.3 General Questions in Evolutionary Models -- 2. Evolutionary Models and Dynamical Systems -- 2.1. Simple Populati on Models -- 2.2. Simple Mutati on-Selection Models -- 2.3. Population Models with Mutati on-Selection -- 3. Chaos and Recurrent Behavior -- 4. Conclusions -- References -- 1.2.2 Tierra: The Character of Adaptation Winston Ewert, William A. Dembski and Robert J. Marks II -- 1. Introduction -- 2. Description of Tierra -- 2.1 Programs -- 2.2 Ancestor -- 2.3 Parallel Tierra -- 2.4 Network Tierra -- 3. Looking for complexity -- 4. Examples -- 4.1 Parasite -- 4.2 Immunity -- 4.3 Hyper-parasites -- 4.4 Social behavior -- 4.5 Cheater -- 4.6 Shorter program -- 4.7 Loop unrolling -- 4.8 Parallel code -- 4.9 Recap -- 5. Summary -- Acknowledgments -- 6. Appendix: Tierra program comparisons -- 6.1 Ancestor and parasite -- 6.2 Immunity -- 6.3 Ancestor and hyper-parasite -- 6.4 Hyper-parasite and social program -- 6.5 Social program and cheater -- 6.6 Ancestor and short code -- 6.7 Loop unrolling -- 6.8 Parallel -- References -- 1.2.3 Multiple Overlapping Genetic Codes Profoundly Reduce the Probability of Beneficial Mutation George Monta�nez, Robert J. Marks II, Jorge Fernandez and John C. Sanford -- 1. Introduction -- 2. Method and Results -- 2.1 The Model -- 2.2 Analyses -- 2.2.1 First Level of Analysis: -- 2.2.2 Second Level of Analysis: -- 2.2.3 Third Level of Analysis: -- 2.2.4 Summary of Results: -- 3. Discussion.

3.1 Possible Objections -- 4. Conclusions -- References -- 1.3.1 Entropy, Evolution and Open Systems Granville Sewell -- 1. Compensation -- 2. The Equations of Entropy Change -- 3. A Tautology -- 4. The Common Sense Law of Physics -- 5. Conclusions -- 6. References -- 1.3.2 Information and Thermodynamics in Living Systems Andy C. McIntosh -- 1. Introduction -- 2. Biological information storage and retrieval - thermodynamic issues -- 2.1 Thermodynamics and isolated systems -- 2.2 Non isolated systems -- 2.2.1 Entropy deficiency -- 2.2.2 Open systems and machinery -- 2.3 Can negative entropy be harvested from somewhere else? -- 3. Free energy and Machines -- 3.1 Free energy -- 3.2 Machines and raised free energies -- 3.3 Thermodynamic law of non-isolated systems -- 3.4 Crystal formation -- 3.5 Bio polymer formation -- 4. A different paradigm: Thermodynamics constrained by functional information -- 4.1 A different paradigm: Information definitions -- 4.2 A different paradigm: principles of information and thermodynamics -- 4.2.1 Principles of information exchange -- 4.2.2 Principles of information interaction with energy and matter in biological systems -- 5. Conclusions -- Acknowledgement -- References -- Section Two Biological Information and Genetic Theory: Introductory Comments John C. Sanford -- 2.1 Not Junk After All: Non-Protein-Coding DNA Carries Extensive Biological Information Jonathan Wells -- 1. Introduction -- 2. Widespread Transcription Into RNAs That Are Probably Functional -- 3. Direct Evidence for Some Specific Functions of Non-Protein- Coding RNAs -- 4. Functions of Non-Protein-Coding DNA That Are Not Determined by Precise Nucleotide Sequences -- 4.1 The Length of DNA Sequences -- 4.2 Chromatin Organization -- 4.3 Chromosome Arrangement in the Nucleus -- 5. Conclusion: Multiple Levels of Biological Information -- Addendum.

Acknowledgments -- References -- 2.2 Can Purifying Natural Selection Preserve Biological Information? Paul Gibson, John R. Baumgardner, Wesley H. Brewer and John C. Sanford -- Introduction -- Results -- Conditions allowing perfect purifying selection -- Effects of high mutati on rate and mutation-mutation interference -- Effects of environmental variance -- Effects of varying degrees of randomness within the selecti on process -- Effects of minimal levels of noise from multiple sources -- Effects of larger population size, more time, and more recombination -- Experiments using the latest estimate of human mutation rate and fitness effect distribution -- Discussion -- General Implications -- Robustness of Findings -- Potential Effects of Other Factors -- Conclusion -- Materials and Methods -- Acknowledgments -- References -- Appendix 1: Key parameter settings and their basis -- 2.3 Selection Threshold Severely Constrains Capture of Beneficial Mutations John C. Sanford, John R. Baumgardner and Wesley H. Brewer -- Introduction -- Results -- Conditions allowing optimal selection for beneficial mutations -- Effect of environmental variance -- Introduction of probability into the selection process -- Effect of high mutation rate and consequent selecti on interference among beneficial mutations -- Effect of extremely beneficial mutations -- Effect of adding deleterious mutations -- Effect of multiple sources of noise, at minimal levels -- Modest levels of noise with a larger population -- The effect of time on STd and STb values -- Discussion -- Can low-impact beneficial mutations contribute to genome building? -- Can high-impact beneficial mutations explain the origin of the genome? -- Can equal-but-opposite compensating mutations stop degeneration? -- Can high-impact compensating beneficial mutations stop degeneration?.

Might beneficial mutations be common? -- Possible criticisms -- Concluding comments -- Methods -- Addendum - -- Acknowledgments -- References -- Appendix I: Key parameter settings and their justification: -- 2.4 Using Numerical Simulation to Test the "Mutation-Count" Hypothesis Wesley H. Brewer, John R. Baumgardner and John C. Sanford -- Introduction -- Methods -- Results -- Discussion -- Acknowledgements -- References -- 2.5 Can Synergistic Epistasis Halt Mutation Accumulation? Results from Numerical Simulation John R. Baumgardner, Wesley H. Brewer and John C. Sanford -- Introduction -- Methods -- Modeling general epistasis -- Modeling additive interactions -- Modeling multi plicative interactions -- Modeling synergistic epistasis -- Results -- Preliminaries -- Large SE effects and modest selection pressure -- Extreme SE effects and moderate selection pressure -- Extremely exaggerated SE effects and extreme selection pressure -- Discussion -- The importance of genic interactions -- The significance of SE -- Testing the limits of SE -- Modeling SE realistically -- Pros and cons of the SE hypothesis -- Conclusions -- References -- 2.6 Computational Evolution Experiments Reveal a Net Loss of Genetic Information Despite Selection Chase W. Nelson and John C. Sanford -- Introduction -- Mendel's Accountant -- Avida -- Selection threshold and genetic entropy -- Methods -- Experiments using Mendel's Accountant -- Experiments using Avida -- Results -- Experiments using Mendel's Accountant -- Experiments using Avida -- Discussion -- Selection threshold and genetic entropy -- High-impact beneficial mutations -- Distribution of mutational fitness effects -- Junk DNA -- Irreducible complexity and the waiting time to beneficial mutation -- Reductive evolution -- Conclusions -- Addendum -- Acknowledgments -- References.

2.7 Information Loss: Potential for Accelerating Natural Genetic Attenuation of RNA Viruses Wesley H. Brewer, Franzine D. Smith and John C. Sanford.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

yorum yazmak için.

Ziyaretçi Sayısı

Destekleyen Koha