High Luminosity Large Hadron Collider, The.

Yazar:Rossi, Lucio
Katkıda bulunan(lar):Bruning, Oliver
Materyal türü: KonuKonuSeri kaydı: Yayıncı: Singapore : World Scientific Publishing Company, 2015Telif hakkı tarihi: �2015Tanım: 1 online resource (406 pages)İçerik türü:text Ortam türü:computer Taşıyıcı türü: online resourceISBN: 9789814675475Tür/Form:Electronic books.Ek fiziksel biçimler:Print version:: High Luminosity Large Hadron Collider, The: The New Machine For Illuminating The Mysteries Of UniverseÇevrimiçi kaynaklar: Click to View
İçindekiler:
Intro -- Contents -- Foreword -- Preface -- List of Authors -- Chapter 1 Introduction to the HL-LHC Project -- 1. Context and Objectives -- 2. Approach for the Upgrade -- 2.1. Present luminosity limitations and hardware constraints -- 2.2. Upgraded systems for the high luminosity -- 2.2.1. Luminosity leveling and availability -- 2.2.2. Upgrade parameters -- 2.3. Project: performance, plan and cost -- 2.4. The international collaboration -- References -- Chapter 2 The Physics Landscape of the High Luminosity LHC -- 1. Introduction -- 1.1. Status and prospects of Higgs studies -- 1.2. Status and prospects of BSM searches -- 1.3. Additional remarks -- References -- Chapter 3 The HL-LHC Machine -- 1. HL-LHC Baseline Parameters -- 2. Alternative Options -- 3. HL-LHC the Geographical Distribution of the Upgrade Interventions -- 3.1. Point 4 -- 3.2. Point 7 -- 3.2.1. The horizontal superconducting links -- 3.2.2. New collimators in the dispersion suppressor -- 3.3. Point 2 -- 3.4. Point 6 -- 3.5. Point 1 and Point 5 -- 3.5.1. LHC machine tunnel -- 3.5.2. Existing LHC tunnel service areas -- 3.5.3. New HL-LHC tunnel service areas -- 3.5.4. New connection from the LHC tunnel and HL-LHC service areas to the surface -- 3.5.5. New surface installation -- 4. Schedule -- References -- Chapter 4 The HL-LHC Accelerator Physics Challenges -- 1. Introduction and General Description -- 1.1. Optics -- 1.1.1. Optics constraints and challenges -- 1.1.2. The Achromatic Telescopic Squeezing (ATS) scheme as baseline for the HL-LHC optics -- 1.1.3. Crossing angle and crab cavities -- 1.1.4. Layout and mechanical aperture -- 1.1.5. Dynamic aperture -- 1.2. Collective effects -- 1.2.1. Present LHC Impedance -- 1.2.2. HL-LHC impedance -- 1.2.3. Landau damping -- 1.2.4. Synchrotron radiation and electron cloud -- 1.2.5. Intra-beam scattering -- 1.2.6. Touschek scattering.
1.2.7. Beam-beam effects -- 1.3. Dealing with pile up limits -- 1.3.1. Detector limitations -- 1.3.2. Luminosity leveling -- 1.4. Summary and conclusions -- Acknowledgments -- References -- Chapter 5 Interface with Experimental Detector in the High Luminosity Run -- 1. Introduction -- 2. Overview of the Main Changes Relevant for the Experiments -- 3. Experimental Beam-pipes -- 4. TAS, TAN -- 5. Failure Scenarios and Experiments Protection -- 6. Machine Induced Backgrounds -- References -- Chapter 6 Superconducting Magnet Technology for the Upgrade -- 1. Targets -- 2. Constraints -- 2.1. Radiation damage and heat load -- 2.2. Field quality -- 2.3. Fringe field and magnet size -- 3. Main Design Choices -- 3.1. Foreword: Loadline, critical surface and margin -- 3.2. Technology, operational temperature, margin -- 3.3. Coil width and stress -- 3.4. Cryostats and interconnections -- 3.5. Cooling -- 4. The Triplet Quadrupoles Q1-Q3 -- 4.1. Historical development -- 4.2. Strand and cable -- 4.3. Coil -- 4.4. Mechanical structure -- 4.5. Protection -- 4.6. Field quality and shimming -- 5. Correctors -- 5.1. Orbit correctors -- 5.2. Linear and nonlinear correctors -- 6. The Separation Dipole D1 -- 7. The Recombination Dipole D2 -- 8. The Large Aperture Two-in-One Quadrupole -- References -- Chapter 7 Crab Cavity Development -- 1. Crab Cavities -- 2. Global and Local Schemes -- 3. Technology Choice and Spatial Constraints -- 4. Compact Cavity Design Options -- 5. Present Status of Prototype Cavities -- 6. RF Multipoles, Coupler Kicks and Limits -- 7. Frequency Tuning System -- 8. RF System and Controls -- 8.1. Beam loading and RF power requirement -- 8.2. Power amplifier and input coupler -- 8.3. RF controls and machine protection -- 8.4. RF noise and stability -- 8.5. Impedance budget and higher order mode damping -- 8.6. Cavity transparency and operation.
9. Integration into SPS and LHC -- 9.1. SPS-BA4 test setup -- 9.2. LHC integration constraints -- 9.3. Positioning and alignment -- References -- Chapter 8 Powering the Hi-Luminosity Triplets -- 1. Introduction -- 2. Powering the High-Luminosity Triplets -- 3. Cold Powering System -- 4. Conclusions -- References -- Chapter 9 Cryogenics for HL-LHC -- 1. Introduction -- 2. LHC Machine Upgrades -- 2.1. Upgraded beam parameters and constraints -- 3. Temperature Level and Heat Loads -- 4. Impact on Existing Sector Cryogenic Plants -- 5. New Cryogenics for P4 Insertion -- 6. New Cryogenics for High-Luminosity Insertions at P1 and P5 -- 7. Building and General Service Requirement -- 8. Conclusion -- References -- Chapter 10 The "Environmental" Challenges: Impact of Radiation on Machine Components -- 1. Collision Debris -- 2. Beamline Model -- 3. Radiation Capture -- 4. Energy Deposition -- 5. Radiation to Electronics -- References -- Chapter 11 Radiation Protection Considerations -- 1. Radiological Quantities -- 2. Regulatory Framework, Design Limits and Dose Objectives -- 2.1. Justification, optimization, limitation -- 2.2. Design constraints -- 2.3. ALARA and dose objectives -- 3. The FLUKA Monte Carlo Code for Radiation Protection Studies -- 4. Benchmark of Radiological Assessments with Measurements -- 5. Estimation of Residual Dose Rates Around ATLAS Until LS3 -- References -- Chapter 12 Machine Protection with a 700 MJ Beam -- 1. Introduction -- 2. Present Performance of LHC Machine Protection and Future Challenges with HL-LHC Beams -- 2.1. Ultra-fast failures -- 2.2. Fast failures -- 2.3. UFOs -- 2.4. Slow failures -- References -- Chapter 13 Cleaning Insertions and Collimation Challenges -- 1. Present LHC Collimation -- 1.1. Introduction to LHC multi-stage collimation -- 1.2. Brief recapitulation of collimation performance in LHC Run 1.
1.3. Preliminary LHC intensity reach from collimation -- 1.4. Challenges of HL-LHC parameters -- 2. Present and Future Collimator Design Concepts -- 2.1. Collimator design for precision and robustness -- 2.2. Collimator with embedded beam position monitors -- 2.3. Rotatory collimator design -- 2.4. Status of R&amp -- D on novel advanced collimator materials -- 3. Improved Cleaning of Dispersion Suppressor Losses -- 3.1. Introduction to local DS collimation -- 3.2. DS collimation solutions for proton and ion cases -- 3.3. Status of prototyping and design -- 4. Advanced Collimation Concepts for HL-LHC -- 4.1. Halo diffusion control techniques -- 4.2. Crystal collimation -- 4.3. Improved optics scenarios for the collimation insertions -- References -- Chapter 14 Long-Range Beam-Beam Compensation Using Wires -- 1. Motivation -- 2. Compensation Scheme -- 3. CERN SPS Wire Compensators -- 4. Scaling Laws -- 5. History of SPS BBLR Studies -- 6. Technical Issues -- 7. Single BBLR 'Excitation' Studies -- 8. Studies for Wire Compensators in the LHC -- 9. Simulation Results -- 10. Demonstrator Setup -- 11. Conclusions and Outlook -- Acknowledgments -- References -- Chapter 15 Impedance and Component Heating -- 1. Introduction -- 2. 2010-2012 Experience -- 2.1. Transverse impedance model and beam instability -- 2.2. Beam-induced RF heating -- 3. Expected Situation During the HL-LHC Era -- References -- Chapter 16 Challenges and Plans for the Proton Injectors -- 1. Introduction -- 2. Present LHC Proton Injectors -- 2.1. Description -- 2.2. Present performance and future needs -- 3. Upgrade Plan of the LHC Proton Injector Complex -- 3.1. Transverse phase planes -- 3.2. Longitudinal phase plane -- 3.3. Electron clouds -- 3.4. Other upgrades -- 4. Estimated Performance of the Upgraded LHC Proton Injector Complex -- References.
Chapter 17 New Injectors: The Linac4 Project and the New H- Source -- 1. Introduction -- 2. Parameters, General Design and Layout -- 3. Challenges of the Ion Source -- 4. Challenges of the 3 MeV Injector -- 5. Challenges of the Accelerating Structures -- 6. Infrastructure and Operational Challenges -- References -- Chapter 18 Challenges and Plans for the Ion Injectors -- 1. Introduction -- 2. The Current Scheme -- 2.1. The ion accelerator chain -- 2.2. Production of the bunch trains for the LHC -- 3. Planned Upgrades -- 3.1. Doubling the repetition rate of Linac3 -- 3.2. Overcoming the intensity limitation in LEIR -- 3.3. Bunch splitting in the PS -- 3.4. New injection scheme into the SPS -- 3.5. Momentum slip-stacking in the SPS -- 4. The Upgraded Filling Scheme -- References -- Chapter 19 Challenges and Plans for Injection and Beam Dump -- 1. Introduction -- 2. Protection Against Injection Errors -- 3. Injection Kicker MKI Performances -- 3.1. Beam induced heating of ferrite yoke -- 3.2. Cooling of ferrite yoke -- 3.3. Ferrite toroid heating -- 3.4. Surface flashover of ceramic tube -- 3.5. Electron cloud -- 3.6. Fast transient beamlosses (UFOs) -- 3.7. Possible future upgrades and ongoing R&amp -- D -- 4. Beam Loss Control at Injection -- 5. Beam Dump System Performance Reach -- 6. Protection Against Beam Dumping Errors -- 7. Beam Dump Kicker Performance Upgrades -- Acknowledgments -- References -- Chapter 20 Beam Instrumentation and Diagnostics for the LHC Upgrade -- 1. Introduction -- 2. Beam Loss Measurement for HL-LHC -- 2.1. Beam loss monitors for the HL-LHC triplet magnets -- 2.2. A radiation tolerant ASIC for the HL-LHC beam loss monitoring system -- 3. Beam Position Monitoring for the HL-LHC -- 3.1. Current performance and limitations -- 3.2. A high resolution orbit measurement system for HL-LHC.
3.3. High directivity strip-line pick-ups for the HL-LHC insertion regions.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
    Ortalama derecelendirme: 0.0 (0 oy)
Bu kayda ilişkin materyal yok

Intro -- Contents -- Foreword -- Preface -- List of Authors -- Chapter 1 Introduction to the HL-LHC Project -- 1. Context and Objectives -- 2. Approach for the Upgrade -- 2.1. Present luminosity limitations and hardware constraints -- 2.2. Upgraded systems for the high luminosity -- 2.2.1. Luminosity leveling and availability -- 2.2.2. Upgrade parameters -- 2.3. Project: performance, plan and cost -- 2.4. The international collaboration -- References -- Chapter 2 The Physics Landscape of the High Luminosity LHC -- 1. Introduction -- 1.1. Status and prospects of Higgs studies -- 1.2. Status and prospects of BSM searches -- 1.3. Additional remarks -- References -- Chapter 3 The HL-LHC Machine -- 1. HL-LHC Baseline Parameters -- 2. Alternative Options -- 3. HL-LHC the Geographical Distribution of the Upgrade Interventions -- 3.1. Point 4 -- 3.2. Point 7 -- 3.2.1. The horizontal superconducting links -- 3.2.2. New collimators in the dispersion suppressor -- 3.3. Point 2 -- 3.4. Point 6 -- 3.5. Point 1 and Point 5 -- 3.5.1. LHC machine tunnel -- 3.5.2. Existing LHC tunnel service areas -- 3.5.3. New HL-LHC tunnel service areas -- 3.5.4. New connection from the LHC tunnel and HL-LHC service areas to the surface -- 3.5.5. New surface installation -- 4. Schedule -- References -- Chapter 4 The HL-LHC Accelerator Physics Challenges -- 1. Introduction and General Description -- 1.1. Optics -- 1.1.1. Optics constraints and challenges -- 1.1.2. The Achromatic Telescopic Squeezing (ATS) scheme as baseline for the HL-LHC optics -- 1.1.3. Crossing angle and crab cavities -- 1.1.4. Layout and mechanical aperture -- 1.1.5. Dynamic aperture -- 1.2. Collective effects -- 1.2.1. Present LHC Impedance -- 1.2.2. HL-LHC impedance -- 1.2.3. Landau damping -- 1.2.4. Synchrotron radiation and electron cloud -- 1.2.5. Intra-beam scattering -- 1.2.6. Touschek scattering.

1.2.7. Beam-beam effects -- 1.3. Dealing with pile up limits -- 1.3.1. Detector limitations -- 1.3.2. Luminosity leveling -- 1.4. Summary and conclusions -- Acknowledgments -- References -- Chapter 5 Interface with Experimental Detector in the High Luminosity Run -- 1. Introduction -- 2. Overview of the Main Changes Relevant for the Experiments -- 3. Experimental Beam-pipes -- 4. TAS, TAN -- 5. Failure Scenarios and Experiments Protection -- 6. Machine Induced Backgrounds -- References -- Chapter 6 Superconducting Magnet Technology for the Upgrade -- 1. Targets -- 2. Constraints -- 2.1. Radiation damage and heat load -- 2.2. Field quality -- 2.3. Fringe field and magnet size -- 3. Main Design Choices -- 3.1. Foreword: Loadline, critical surface and margin -- 3.2. Technology, operational temperature, margin -- 3.3. Coil width and stress -- 3.4. Cryostats and interconnections -- 3.5. Cooling -- 4. The Triplet Quadrupoles Q1-Q3 -- 4.1. Historical development -- 4.2. Strand and cable -- 4.3. Coil -- 4.4. Mechanical structure -- 4.5. Protection -- 4.6. Field quality and shimming -- 5. Correctors -- 5.1. Orbit correctors -- 5.2. Linear and nonlinear correctors -- 6. The Separation Dipole D1 -- 7. The Recombination Dipole D2 -- 8. The Large Aperture Two-in-One Quadrupole -- References -- Chapter 7 Crab Cavity Development -- 1. Crab Cavities -- 2. Global and Local Schemes -- 3. Technology Choice and Spatial Constraints -- 4. Compact Cavity Design Options -- 5. Present Status of Prototype Cavities -- 6. RF Multipoles, Coupler Kicks and Limits -- 7. Frequency Tuning System -- 8. RF System and Controls -- 8.1. Beam loading and RF power requirement -- 8.2. Power amplifier and input coupler -- 8.3. RF controls and machine protection -- 8.4. RF noise and stability -- 8.5. Impedance budget and higher order mode damping -- 8.6. Cavity transparency and operation.

9. Integration into SPS and LHC -- 9.1. SPS-BA4 test setup -- 9.2. LHC integration constraints -- 9.3. Positioning and alignment -- References -- Chapter 8 Powering the Hi-Luminosity Triplets -- 1. Introduction -- 2. Powering the High-Luminosity Triplets -- 3. Cold Powering System -- 4. Conclusions -- References -- Chapter 9 Cryogenics for HL-LHC -- 1. Introduction -- 2. LHC Machine Upgrades -- 2.1. Upgraded beam parameters and constraints -- 3. Temperature Level and Heat Loads -- 4. Impact on Existing Sector Cryogenic Plants -- 5. New Cryogenics for P4 Insertion -- 6. New Cryogenics for High-Luminosity Insertions at P1 and P5 -- 7. Building and General Service Requirement -- 8. Conclusion -- References -- Chapter 10 The "Environmental" Challenges: Impact of Radiation on Machine Components -- 1. Collision Debris -- 2. Beamline Model -- 3. Radiation Capture -- 4. Energy Deposition -- 5. Radiation to Electronics -- References -- Chapter 11 Radiation Protection Considerations -- 1. Radiological Quantities -- 2. Regulatory Framework, Design Limits and Dose Objectives -- 2.1. Justification, optimization, limitation -- 2.2. Design constraints -- 2.3. ALARA and dose objectives -- 3. The FLUKA Monte Carlo Code for Radiation Protection Studies -- 4. Benchmark of Radiological Assessments with Measurements -- 5. Estimation of Residual Dose Rates Around ATLAS Until LS3 -- References -- Chapter 12 Machine Protection with a 700 MJ Beam -- 1. Introduction -- 2. Present Performance of LHC Machine Protection and Future Challenges with HL-LHC Beams -- 2.1. Ultra-fast failures -- 2.2. Fast failures -- 2.3. UFOs -- 2.4. Slow failures -- References -- Chapter 13 Cleaning Insertions and Collimation Challenges -- 1. Present LHC Collimation -- 1.1. Introduction to LHC multi-stage collimation -- 1.2. Brief recapitulation of collimation performance in LHC Run 1.

1.3. Preliminary LHC intensity reach from collimation -- 1.4. Challenges of HL-LHC parameters -- 2. Present and Future Collimator Design Concepts -- 2.1. Collimator design for precision and robustness -- 2.2. Collimator with embedded beam position monitors -- 2.3. Rotatory collimator design -- 2.4. Status of R&amp -- D on novel advanced collimator materials -- 3. Improved Cleaning of Dispersion Suppressor Losses -- 3.1. Introduction to local DS collimation -- 3.2. DS collimation solutions for proton and ion cases -- 3.3. Status of prototyping and design -- 4. Advanced Collimation Concepts for HL-LHC -- 4.1. Halo diffusion control techniques -- 4.2. Crystal collimation -- 4.3. Improved optics scenarios for the collimation insertions -- References -- Chapter 14 Long-Range Beam-Beam Compensation Using Wires -- 1. Motivation -- 2. Compensation Scheme -- 3. CERN SPS Wire Compensators -- 4. Scaling Laws -- 5. History of SPS BBLR Studies -- 6. Technical Issues -- 7. Single BBLR 'Excitation' Studies -- 8. Studies for Wire Compensators in the LHC -- 9. Simulation Results -- 10. Demonstrator Setup -- 11. Conclusions and Outlook -- Acknowledgments -- References -- Chapter 15 Impedance and Component Heating -- 1. Introduction -- 2. 2010-2012 Experience -- 2.1. Transverse impedance model and beam instability -- 2.2. Beam-induced RF heating -- 3. Expected Situation During the HL-LHC Era -- References -- Chapter 16 Challenges and Plans for the Proton Injectors -- 1. Introduction -- 2. Present LHC Proton Injectors -- 2.1. Description -- 2.2. Present performance and future needs -- 3. Upgrade Plan of the LHC Proton Injector Complex -- 3.1. Transverse phase planes -- 3.2. Longitudinal phase plane -- 3.3. Electron clouds -- 3.4. Other upgrades -- 4. Estimated Performance of the Upgraded LHC Proton Injector Complex -- References.

Chapter 17 New Injectors: The Linac4 Project and the New H- Source -- 1. Introduction -- 2. Parameters, General Design and Layout -- 3. Challenges of the Ion Source -- 4. Challenges of the 3 MeV Injector -- 5. Challenges of the Accelerating Structures -- 6. Infrastructure and Operational Challenges -- References -- Chapter 18 Challenges and Plans for the Ion Injectors -- 1. Introduction -- 2. The Current Scheme -- 2.1. The ion accelerator chain -- 2.2. Production of the bunch trains for the LHC -- 3. Planned Upgrades -- 3.1. Doubling the repetition rate of Linac3 -- 3.2. Overcoming the intensity limitation in LEIR -- 3.3. Bunch splitting in the PS -- 3.4. New injection scheme into the SPS -- 3.5. Momentum slip-stacking in the SPS -- 4. The Upgraded Filling Scheme -- References -- Chapter 19 Challenges and Plans for Injection and Beam Dump -- 1. Introduction -- 2. Protection Against Injection Errors -- 3. Injection Kicker MKI Performances -- 3.1. Beam induced heating of ferrite yoke -- 3.2. Cooling of ferrite yoke -- 3.3. Ferrite toroid heating -- 3.4. Surface flashover of ceramic tube -- 3.5. Electron cloud -- 3.6. Fast transient beamlosses (UFOs) -- 3.7. Possible future upgrades and ongoing R&amp -- D -- 4. Beam Loss Control at Injection -- 5. Beam Dump System Performance Reach -- 6. Protection Against Beam Dumping Errors -- 7. Beam Dump Kicker Performance Upgrades -- Acknowledgments -- References -- Chapter 20 Beam Instrumentation and Diagnostics for the LHC Upgrade -- 1. Introduction -- 2. Beam Loss Measurement for HL-LHC -- 2.1. Beam loss monitors for the HL-LHC triplet magnets -- 2.2. A radiation tolerant ASIC for the HL-LHC beam loss monitoring system -- 3. Beam Position Monitoring for the HL-LHC -- 3.1. Current performance and limitations -- 3.2. A high resolution orbit measurement system for HL-LHC.

3.3. High directivity strip-line pick-ups for the HL-LHC insertion regions.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

yorum yazmak için.

Ziyaretçi Sayısı

Destekleyen Koha