Mesoscale Analysis of Hydraulics.

Yazar:Xu, Weilin
Materyal türü: KonuKonuYayıncı: Singapore : Springer Singapore Pte. Limited, 2020Telif hakkı tarihi: �2021Tanım: 1 online resource (253 pages)İçerik türü:text Ortam türü:computer Taşıyıcı türü: online resourceISBN: 9789811597855Tür/Form:Electronic books.Ek fiziksel biçimler:Print version:: Mesoscale Analysis of HydraulicsLOC classification: TC1-1800Çevrimiçi kaynaklar: Click to View
İçindekiler:
Intro -- Foreword I -- Foreword II -- Acknowledgments -- Contents -- About the Author -- List of Main Symbols -- List of Main Acronyms -- 1 Introduction -- 1.1 Definition of Mesoscale -- 1.2 Necessity of Mesoscale Research -- 1.3 Main Contents of Mesoscale Research -- References -- 2 Mesoscale Analysis of Cavitation and Cavitation Erosion -- 2.1 Background -- 2.2 Interactions Between Cavitation Bubbles and Rigid Boundaries -- 2.2.1 Shock Waves and Microjets Generated from the Collapse of CBs -- 2.2.2 Effects of the Geometric Shape of a Boundary on the Collapse Behavior of a CB -- 2.3 Interactions Between Cavitation Bubbles and Elastic Boundaries -- 2.3.1 Morphology of CBs Near Elastic Boundaries During the Collapsing Process -- 2.3.2 Shock Waves Generated by CBs Near Elastic Boundaries When Collapsing -- 2.3.3 Cavitation Erosion Resistance of Elastic Materials -- 2.4 Interactions Between Cavitation Bubbles -- 2.4.1 Interactions Between Two CBs -- 2.4.2 Interactions Between Multiple CBs -- 2.5 Interactions Between Cavitation Bubbles and Particles -- 2.5.1 Effects of Particles on the Collapse Directions of CBs -- 2.5.2 Effects of a Particle on the Shock Wave Generated by a CB When Collapsing -- 2.5.3 Effects of Particles on Cavitation Erosion -- 2.6 Collapse Locations of Cavitation Bubbles and Cavitation Erosion Control in Engineering Practice -- 2.6.1 Collapse Location Distribution Pattern of CBs in a Flow Past a Convex Body -- 2.6.2 Relationship of the Collapse Locations of CBs in a Flow Past a Convex Body with the Flow Field -- 2.6.3 Critical Conditions Required for Near-Boundary Collapse of CBs in a Flow Past a Convex Body -- 2.7 Conclusions -- References -- 3 Mesoscale Analysis of Aeration for Cavitation Erosion Protection -- 3.1 Background -- 3.2 Attenuation Effect of Air Bubbles on the Collapse Intensity of Cavitation Bubbles.
3.2.1 Intensity of the Collapse Noise of a Cavitation Bubble Interacting But Not Connected with Air Bubbles -- 3.2.2 Intensity of the Collapse Noise of a Cavitation Bubble Interacting and Connected with an Air Bubble -- 3.3 Direction-Changing Effect of an Air Bubble on the Collapse of a Cavitation Bubble -- 3.3.1 Direction-Changing Effect of an Air Bubble on the Collapse of a Cavitation Bubble -- 3.3.2 Direction-Changing Effect of an Air Bubble on a Cavitation Bubble Evolving Near a Wall -- 3.3.3 Combined Direction-Changing Effects of a Wall and an Air Bubble on the Collapse of a Cavitation Bubble -- 3.4 Retarding Effect of an Air Bubble on the Collapse Shock Wave of a Cavitation Bubble -- 3.4.1 Retarding Effect of an Air Bubble on the Collapse Shock Wave of a Cavitation Bubble -- 3.4.2 Impact Intensity of the Collapse Shock Wave of a Cavitation Bubble Interacting with an Air Bubble Near a Wall -- 3.5 Forced Aeration for Cavitation Erosion Protection of High-Head Dams -- 3.5.1 Mesoscale Mechanism of Forced Aeration -- 3.5.2 Design Principles of Forced-Aeration for Cavitation Erosion Protection Structures of High-Head Dams -- 3.6 Conclusions -- References -- 4 Mesoscale Analysis of Air-Water Two-Phase Flow -- 4.1 Background -- 4.2 Mesoscale Mechanism for Surface Aeration of High-Velocity Flows -- 4.2.1 Mesoscale Characteristics of the Free-Surface Shape of Flows -- 4.2.2 Mesoscale Free-Surface Aeration Process of Flows -- 4.2.3 Quantitative Analysis of the Free-Surface Aeration of Flows -- 4.3 Critical Condition for Surface Aeration of High-Velocity Flows -- 4.3.1 Critical Condition for Air Entrainment of Free-Surface Depressions in Flows -- 4.3.2 Air-Bubble Entrainment Characteristics of Free-Surface Depressions in Flows -- 4.3.3 Comparison of Calculated and Experimental Results.
4.4 Calculation of Concentration Distribution for Surface Aeration of High-Velocity Flows -- 4.4.1 Regional Characteristics of Surface Aeration in High-Velocity Flows -- 4.4.2 Comparison of the Calculated and Measured Values of the Ca Distribution in High-Velocity Aerated Flows -- 4.4.3 Diffusion Pattern of Ca Along the Course -- 4.5 Analysis of Depth and Concentration of Aerated Flows in Engineering Practice -- 4.5.1 Analysis of Self-Aerated Open-Channel Flows in Terms of Hm -- 4.5.2 Analysis of the Aerated Flow in the Spillway of the Jinping-I Hydropower Station -- 4.6 Conclusions -- References -- 5 Mesoscale Analysis of Flood Discharge and Energy Dissipation -- 5.1 Background -- 5.2 Vortex Structure of a Single Jet -- 5.2.1 Velocity Field Characteristics of a Single Jet -- 5.2.2 Vorticity Field Characteristics of a Single Jet -- 5.3 Vortex Structure with Multijets -- 5.3.1 Transverse Vortices -- 5.3.2 Vertical Vortices -- 5.4 Vortex Structure of a Pressure Flow with a Sudden Contraction -- 5.4.1 Flow Field Characteristics of a Pressure Flow with a Sudden Contraction -- 5.4.2 Vortex Blob Characteristics of a Pressure Flow with a Sudden Contraction -- 5.5 Application of Multihorizontal Submerged Jets in Engineering Project -- 5.5.1 Overview of the Project -- 5.5.2 Characteristics of the Flood Discharge and Energy Dissipation -- 5.6 Conclusions -- References -- 6 Mesoscale Analysis of Flood Discharge Atomization -- 6.1 Background -- 6.2 Jet Spallation in Air -- 6.2.1 Velocity Distribution of Jet-Spalled Water Droplets -- 6.2.2 Distribution of the Moving Directions of the Water Droplets Formed by Jet Spallation -- 6.3 Jet Collision in Air -- 6.3.1 Characteristics of the Water Droplets Formed by a Jet Collision in Air -- 6.3.2 Effects of the Flow-Rate Ratio on the Characteristics of the Water Droplets Formed by a Jet Collision.
6.3.3 Spallation Area of Jets After Collision in Air -- 6.4 Water Splash by Plunging Jets -- 6.4.1 Characteristics of the Water Droplets Splashed by a Jet -- 6.4.2 Motion Pattern of the Water Droplets Formed by the Splashing of Water with a High-Velocity Plunging Jet -- 6.5 Discussion of the Scale Effect in Flood Discharge Atomization Model Tests for High-Head Dams -- 6.5.1 Similarity Criterion for FDA Model Tests -- 6.5.2 Scale Effect in FDA Model Tests -- 6.6 Conclusions -- References -- 7 Mesoscale Analysis of Flash Flood and Sediment Disasters -- 7.1 Background -- 7.2 Sudden Stop and Accumulation of Sediment Particles After a Hydraulic Jump -- 7.3 Threshold Conditions for Combined Flash Flood and Sediment Disasters -- 7.4 Identification of Disaster-Prone Regions Based on the Threshold Conditions for Combined Flash Flood and Sediment Disasters -- 7.5 Analysis of Control Techniques Based on the Threshold Conditions for Combined Flash Flood and Sediment Disasters -- 7.6 Conclusions -- References.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
    Ortalama derecelendirme: 0.0 (0 oy)
Bu kayda ilişkin materyal yok

Intro -- Foreword I -- Foreword II -- Acknowledgments -- Contents -- About the Author -- List of Main Symbols -- List of Main Acronyms -- 1 Introduction -- 1.1 Definition of Mesoscale -- 1.2 Necessity of Mesoscale Research -- 1.3 Main Contents of Mesoscale Research -- References -- 2 Mesoscale Analysis of Cavitation and Cavitation Erosion -- 2.1 Background -- 2.2 Interactions Between Cavitation Bubbles and Rigid Boundaries -- 2.2.1 Shock Waves and Microjets Generated from the Collapse of CBs -- 2.2.2 Effects of the Geometric Shape of a Boundary on the Collapse Behavior of a CB -- 2.3 Interactions Between Cavitation Bubbles and Elastic Boundaries -- 2.3.1 Morphology of CBs Near Elastic Boundaries During the Collapsing Process -- 2.3.2 Shock Waves Generated by CBs Near Elastic Boundaries When Collapsing -- 2.3.3 Cavitation Erosion Resistance of Elastic Materials -- 2.4 Interactions Between Cavitation Bubbles -- 2.4.1 Interactions Between Two CBs -- 2.4.2 Interactions Between Multiple CBs -- 2.5 Interactions Between Cavitation Bubbles and Particles -- 2.5.1 Effects of Particles on the Collapse Directions of CBs -- 2.5.2 Effects of a Particle on the Shock Wave Generated by a CB When Collapsing -- 2.5.3 Effects of Particles on Cavitation Erosion -- 2.6 Collapse Locations of Cavitation Bubbles and Cavitation Erosion Control in Engineering Practice -- 2.6.1 Collapse Location Distribution Pattern of CBs in a Flow Past a Convex Body -- 2.6.2 Relationship of the Collapse Locations of CBs in a Flow Past a Convex Body with the Flow Field -- 2.6.3 Critical Conditions Required for Near-Boundary Collapse of CBs in a Flow Past a Convex Body -- 2.7 Conclusions -- References -- 3 Mesoscale Analysis of Aeration for Cavitation Erosion Protection -- 3.1 Background -- 3.2 Attenuation Effect of Air Bubbles on the Collapse Intensity of Cavitation Bubbles.

3.2.1 Intensity of the Collapse Noise of a Cavitation Bubble Interacting But Not Connected with Air Bubbles -- 3.2.2 Intensity of the Collapse Noise of a Cavitation Bubble Interacting and Connected with an Air Bubble -- 3.3 Direction-Changing Effect of an Air Bubble on the Collapse of a Cavitation Bubble -- 3.3.1 Direction-Changing Effect of an Air Bubble on the Collapse of a Cavitation Bubble -- 3.3.2 Direction-Changing Effect of an Air Bubble on a Cavitation Bubble Evolving Near a Wall -- 3.3.3 Combined Direction-Changing Effects of a Wall and an Air Bubble on the Collapse of a Cavitation Bubble -- 3.4 Retarding Effect of an Air Bubble on the Collapse Shock Wave of a Cavitation Bubble -- 3.4.1 Retarding Effect of an Air Bubble on the Collapse Shock Wave of a Cavitation Bubble -- 3.4.2 Impact Intensity of the Collapse Shock Wave of a Cavitation Bubble Interacting with an Air Bubble Near a Wall -- 3.5 Forced Aeration for Cavitation Erosion Protection of High-Head Dams -- 3.5.1 Mesoscale Mechanism of Forced Aeration -- 3.5.2 Design Principles of Forced-Aeration for Cavitation Erosion Protection Structures of High-Head Dams -- 3.6 Conclusions -- References -- 4 Mesoscale Analysis of Air-Water Two-Phase Flow -- 4.1 Background -- 4.2 Mesoscale Mechanism for Surface Aeration of High-Velocity Flows -- 4.2.1 Mesoscale Characteristics of the Free-Surface Shape of Flows -- 4.2.2 Mesoscale Free-Surface Aeration Process of Flows -- 4.2.3 Quantitative Analysis of the Free-Surface Aeration of Flows -- 4.3 Critical Condition for Surface Aeration of High-Velocity Flows -- 4.3.1 Critical Condition for Air Entrainment of Free-Surface Depressions in Flows -- 4.3.2 Air-Bubble Entrainment Characteristics of Free-Surface Depressions in Flows -- 4.3.3 Comparison of Calculated and Experimental Results.

4.4 Calculation of Concentration Distribution for Surface Aeration of High-Velocity Flows -- 4.4.1 Regional Characteristics of Surface Aeration in High-Velocity Flows -- 4.4.2 Comparison of the Calculated and Measured Values of the Ca Distribution in High-Velocity Aerated Flows -- 4.4.3 Diffusion Pattern of Ca Along the Course -- 4.5 Analysis of Depth and Concentration of Aerated Flows in Engineering Practice -- 4.5.1 Analysis of Self-Aerated Open-Channel Flows in Terms of Hm -- 4.5.2 Analysis of the Aerated Flow in the Spillway of the Jinping-I Hydropower Station -- 4.6 Conclusions -- References -- 5 Mesoscale Analysis of Flood Discharge and Energy Dissipation -- 5.1 Background -- 5.2 Vortex Structure of a Single Jet -- 5.2.1 Velocity Field Characteristics of a Single Jet -- 5.2.2 Vorticity Field Characteristics of a Single Jet -- 5.3 Vortex Structure with Multijets -- 5.3.1 Transverse Vortices -- 5.3.2 Vertical Vortices -- 5.4 Vortex Structure of a Pressure Flow with a Sudden Contraction -- 5.4.1 Flow Field Characteristics of a Pressure Flow with a Sudden Contraction -- 5.4.2 Vortex Blob Characteristics of a Pressure Flow with a Sudden Contraction -- 5.5 Application of Multihorizontal Submerged Jets in Engineering Project -- 5.5.1 Overview of the Project -- 5.5.2 Characteristics of the Flood Discharge and Energy Dissipation -- 5.6 Conclusions -- References -- 6 Mesoscale Analysis of Flood Discharge Atomization -- 6.1 Background -- 6.2 Jet Spallation in Air -- 6.2.1 Velocity Distribution of Jet-Spalled Water Droplets -- 6.2.2 Distribution of the Moving Directions of the Water Droplets Formed by Jet Spallation -- 6.3 Jet Collision in Air -- 6.3.1 Characteristics of the Water Droplets Formed by a Jet Collision in Air -- 6.3.2 Effects of the Flow-Rate Ratio on the Characteristics of the Water Droplets Formed by a Jet Collision.

6.3.3 Spallation Area of Jets After Collision in Air -- 6.4 Water Splash by Plunging Jets -- 6.4.1 Characteristics of the Water Droplets Splashed by a Jet -- 6.4.2 Motion Pattern of the Water Droplets Formed by the Splashing of Water with a High-Velocity Plunging Jet -- 6.5 Discussion of the Scale Effect in Flood Discharge Atomization Model Tests for High-Head Dams -- 6.5.1 Similarity Criterion for FDA Model Tests -- 6.5.2 Scale Effect in FDA Model Tests -- 6.6 Conclusions -- References -- 7 Mesoscale Analysis of Flash Flood and Sediment Disasters -- 7.1 Background -- 7.2 Sudden Stop and Accumulation of Sediment Particles After a Hydraulic Jump -- 7.3 Threshold Conditions for Combined Flash Flood and Sediment Disasters -- 7.4 Identification of Disaster-Prone Regions Based on the Threshold Conditions for Combined Flash Flood and Sediment Disasters -- 7.5 Analysis of Control Techniques Based on the Threshold Conditions for Combined Flash Flood and Sediment Disasters -- 7.6 Conclusions -- References.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

yorum yazmak için.

Ziyaretçi Sayısı

Destekleyen Koha