Advances in Production Technology.

Yazar:Brecher, Christian
Materyal türü: KonuKonuSeri kaydı: Yayıncı: Cham : Springer International Publishing AG, 2014Telif hakkı tarihi: �2015Tanım: 1 online resource (212 pages)İçerik türü:text Ortam türü:computer Taşıyıcı türü: online resourceISBN: 9783319123042Tür/Form:Electronic books.Ek fiziksel biçimler:Print version:: Advances in Production TechnologyLOC classification: TS1-2301Çevrimiçi kaynaklar: Click to View
İçindekiler:
Intro -- Preface -- Contents -- 1 Introduction -- 1.1 The Cluster of Excellence ``Integrative Production Technology for High-Wage Countries'' -- 1.2 Scientific Roadmap -- Acknowledgment -- References -- Part ITowards a New Theory of Production -- 2 Hypotheses for a Theory of Production in the Context of Industrie 4.0 -- Abstract -- 2.1 Introduction -- 2.2 Collaboration Productivity Due to Industrie 4.0-Enablers -- 2.3 Mechanisms and Target States Due to Increased Productivity -- 2.3.1 Revolutionary Product Lifecycles -- 2.3.2 Virtual Engineering of Complete Value Chains -- 2.3.3 Revolutionary Short Value Chains -- 2.3.4 Better Performing Than Engineered -- 2.4 Conclusion -- Acknowledgments -- References -- 3 The Production Logistic Theory as an Integral Part of a Theory of Production Technology -- 3.1 Motivation -- 3.2 Theory Development in the Context of Production Technology -- 3.3 Production Logistic Theory -- 3.4 Towards a Theory of Production Technology -- 3.5 Summary and Outlook -- References -- Part IIIndividualised Production -- 4 Business Models with Additive Manufacturing---Opportunities and Challenges from the Perspective of Economics and Management -- Abstract -- 4.1 Introduction -- 4.2 Technological Characteristics Driving AM's Economic Impact -- 4.3 AM Ecosystem -- 4.4 Examples of Existing AM Businesses -- 4.5 How AM Facilitates User Innovation and Entrepreneurship -- 4.5.1 Local Manufacturing and 3D Printing at Home -- 4.5.2 User Innovation and AM -- 4.5.3 User Entrepreneurship and AM -- 4.6 Conclusions -- Acknowledgment -- References -- 5 SLM Production Systems: Recent Developments in Process Development, Machine Concepts and Component Design -- Abstract -- 5.1 Introduction -- 5.2 SLM Machine Concepts -- 5.2.1 Valuation Method for SLM Machine Concepts -- 5.2.2 SLM Machine Concept Parallelization -- 5.3 Process Development.
5.4 Functional Adapted Component Design -- 5.4.1 Topology Optimisation and SLM -- 5.4.2 Functional Adapted Lattice Structures and SLM -- Acknowledgment -- References -- Part IIIVirtual Production Systems -- 6 Meta-Modelling Techniques Towards Virtual Production Intelligence -- Abstract -- 6.1 Introduction -- 6.2 Meta-Modelling Methods -- 6.2.1 Sampling -- 6.2.2 Interpolation -- 6.2.3 Exploration -- 6.3 Applications -- 6.3.1 Sheet Metal Cutting with Laser Radiation -- 6.3.2 Laser Epoxy Cut -- 6.3.3 Sheet Metal Drilling -- 6.3.4 Ablation of Glass -- 6.4 Conclusion and Outlook -- Acknowledgments -- References -- 7 Designing New Forging Steels by ICMPE -- Abstract -- 7.1 Introduction -- 7.2 Interplay of Various Modelling Approaches -- 7.3 Microalloyed Forging Steels -- 7.4 Microalloyed Gear Steel for HT-Carburizing -- 7.5 Bainitic Steels -- 7.6 Al-Free Gear Steel -- 7.7 Conclusions -- Acknowledgments -- References -- Part IVIntegrated Technologies -- 8 Productivity Improvement Through the Application of Hybrid Processes -- Abstract -- 8.1 Introduction -- 8.2 Classification of Hybrid Processes -- 8.3 Assisted Hybrid Processes -- 8.3.1 Reduction of Process Force -- 8.3.2 Higher Material Removal Rate -- 8.3.3 Reduced Tool Wear -- 8.3.4 Excellent Surface Quality -- 8.3.5 High Precision -- 8.4 Mixed Processes and Process Mechanisms -- 8.4.1 Combinations with EDM -- 8.4.2 Combinations with Grinding -- 8.4.3 Process Combinations with Hardening -- 8.4.4 Combination of Forming Processes -- 8.5 Conclusions -- Acknowledgments -- References -- 9 The Development of Incremental Sheet Forming from Flexible Forming to Fully Integrated Production of Sheet Metal Parts -- Abstract -- 9.1 Introduction to Incremental Sheet Metal Forming -- 9.2 Design of a Machine for Hybrid ISF -- 9.2.1 Basic Set-up for Stretch-Forming and ISF -- 9.2.2 Basic Set-up for Laser-Assisted ISF.
9.2.3 CAX Environment -- 9.3 Case Study: Stretch Forming and ISF -- 9.4 Case Study: Heat-Assisted ISF -- 9.5 Improvements by the Hybrid ISF Variants -- Acknowledgments -- References -- 10 IMKS and IMMS---Two Integrated Methods for the One-Step-Production of Plastic/Metal Hybrid Parts -- Abstract -- 10.1 Introduction -- 10.2 Integrated Metal/Plastics Injection Moulding (IMKS) -- 10.2.1 Device for the Processing of Low-Melting Metal Alloys -- 10.2.2 IMKS Mould Technology -- 10.2.3 Influence of Variothermal Mould Temperature Control on the Achievable Conductive Track Length -- 10.3 In-Mould-Metal-Spraying (IMMS) -- 10.3.1 Selection of Materials and Thermal Spraying Process -- 10.4 Conclusion and Outlook -- Acknowledgments -- References -- Part VSelf-Optimising Production Systems -- 11 A Symbolic Approach to Self-optimisation in Production System Analysis and Control -- 11.1 Introduction -- 11.2 Cognitive Automation -- 11.2.1 Cognitive Automation of Assembly Tasks -- 11.2.2 Adaptive Planning for Human-Robot Interaction -- 11.3 Embedding the Cognitive Control Unit into an Architecture for Self-optimising Production Systems -- 11.4 System Validation -- 11.5 Summary and Outlook -- Acknowledgments -- References -- 12 Approaches of Self-optimising Systems in Manufacturing -- Abstract -- 12.1 Self-optimising Systems in Manufacturing -- 12.2 Autonomous Generation of Technological Models -- 12.2.1 Interactive Human Machine Interface -- 12.2.2 Planning and Organisation of Milling Tests -- 12.2.3 Automated Execution of Milling Tests -- 12.2.4 Modelling and Evaluation -- 12.3 Self-optimised Injection Moulding -- 12.4 Summary and Outlook -- Acknowledgment -- References -- 13 Adaptive Workplace Design Based on Biomechanical Stress Curves -- Abstract -- 13.1 Introduction.
13.2 Capabilities of Existing Methods of Workplace Design in Context of Self-optimizing Production Systems -- 13.3 Use of Biomechanical Human Models for Workplace Design -- 13.4 Approach for Body Part-Oriented Indication of Physiological Strain in Real Time -- 13.5 Use of Biomechanical Stress Curves in Context of Adaptive Workplace Design -- 13.6 Conclusion and Outlook -- References -- Part VIHuman Factors in Production Technology -- 14 Human Factors in Production Systems -- Abstract -- 14.1 Motives for Integrating Human Factors in Production Engineering---the Challenge -- 14.1.1 The Contribution of the Social Sciences -- 14.2 Methods for Understanding and Quantifying Human Factors---the Potential -- 14.2.1 Metrics, Procedures and Empirical Approaches -- 14.2.2 Case Studies---Examples of the Potential of Exploring Human Factors -- 14.3 Beyond---How to Amend Productivity with Quality of (Work)Life---the Vision -- 14.3.1 Enabling Communication in Interdisciplinary Teams -- 14.3.2 Motivators for High Performance Cultures -- Acknowledgments -- References -- 15 Human Factors in Product Development and Design -- 15.1 Introduction -- 15.2 The Human Perception of Quality -- 15.3 The Manifestation of Human Perception and Cognition -- 15.4 Human Oriented Product Development Processes -- Acknowledgment -- References.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
    Ortalama derecelendirme: 0.0 (0 oy)
Bu kayda ilişkin materyal yok

Intro -- Preface -- Contents -- 1 Introduction -- 1.1 The Cluster of Excellence ``Integrative Production Technology for High-Wage Countries'' -- 1.2 Scientific Roadmap -- Acknowledgment -- References -- Part ITowards a New Theory of Production -- 2 Hypotheses for a Theory of Production in the Context of Industrie 4.0 -- Abstract -- 2.1 Introduction -- 2.2 Collaboration Productivity Due to Industrie 4.0-Enablers -- 2.3 Mechanisms and Target States Due to Increased Productivity -- 2.3.1 Revolutionary Product Lifecycles -- 2.3.2 Virtual Engineering of Complete Value Chains -- 2.3.3 Revolutionary Short Value Chains -- 2.3.4 Better Performing Than Engineered -- 2.4 Conclusion -- Acknowledgments -- References -- 3 The Production Logistic Theory as an Integral Part of a Theory of Production Technology -- 3.1 Motivation -- 3.2 Theory Development in the Context of Production Technology -- 3.3 Production Logistic Theory -- 3.4 Towards a Theory of Production Technology -- 3.5 Summary and Outlook -- References -- Part IIIndividualised Production -- 4 Business Models with Additive Manufacturing---Opportunities and Challenges from the Perspective of Economics and Management -- Abstract -- 4.1 Introduction -- 4.2 Technological Characteristics Driving AM's Economic Impact -- 4.3 AM Ecosystem -- 4.4 Examples of Existing AM Businesses -- 4.5 How AM Facilitates User Innovation and Entrepreneurship -- 4.5.1 Local Manufacturing and 3D Printing at Home -- 4.5.2 User Innovation and AM -- 4.5.3 User Entrepreneurship and AM -- 4.6 Conclusions -- Acknowledgment -- References -- 5 SLM Production Systems: Recent Developments in Process Development, Machine Concepts and Component Design -- Abstract -- 5.1 Introduction -- 5.2 SLM Machine Concepts -- 5.2.1 Valuation Method for SLM Machine Concepts -- 5.2.2 SLM Machine Concept Parallelization -- 5.3 Process Development.

5.4 Functional Adapted Component Design -- 5.4.1 Topology Optimisation and SLM -- 5.4.2 Functional Adapted Lattice Structures and SLM -- Acknowledgment -- References -- Part IIIVirtual Production Systems -- 6 Meta-Modelling Techniques Towards Virtual Production Intelligence -- Abstract -- 6.1 Introduction -- 6.2 Meta-Modelling Methods -- 6.2.1 Sampling -- 6.2.2 Interpolation -- 6.2.3 Exploration -- 6.3 Applications -- 6.3.1 Sheet Metal Cutting with Laser Radiation -- 6.3.2 Laser Epoxy Cut -- 6.3.3 Sheet Metal Drilling -- 6.3.4 Ablation of Glass -- 6.4 Conclusion and Outlook -- Acknowledgments -- References -- 7 Designing New Forging Steels by ICMPE -- Abstract -- 7.1 Introduction -- 7.2 Interplay of Various Modelling Approaches -- 7.3 Microalloyed Forging Steels -- 7.4 Microalloyed Gear Steel for HT-Carburizing -- 7.5 Bainitic Steels -- 7.6 Al-Free Gear Steel -- 7.7 Conclusions -- Acknowledgments -- References -- Part IVIntegrated Technologies -- 8 Productivity Improvement Through the Application of Hybrid Processes -- Abstract -- 8.1 Introduction -- 8.2 Classification of Hybrid Processes -- 8.3 Assisted Hybrid Processes -- 8.3.1 Reduction of Process Force -- 8.3.2 Higher Material Removal Rate -- 8.3.3 Reduced Tool Wear -- 8.3.4 Excellent Surface Quality -- 8.3.5 High Precision -- 8.4 Mixed Processes and Process Mechanisms -- 8.4.1 Combinations with EDM -- 8.4.2 Combinations with Grinding -- 8.4.3 Process Combinations with Hardening -- 8.4.4 Combination of Forming Processes -- 8.5 Conclusions -- Acknowledgments -- References -- 9 The Development of Incremental Sheet Forming from Flexible Forming to Fully Integrated Production of Sheet Metal Parts -- Abstract -- 9.1 Introduction to Incremental Sheet Metal Forming -- 9.2 Design of a Machine for Hybrid ISF -- 9.2.1 Basic Set-up for Stretch-Forming and ISF -- 9.2.2 Basic Set-up for Laser-Assisted ISF.

9.2.3 CAX Environment -- 9.3 Case Study: Stretch Forming and ISF -- 9.4 Case Study: Heat-Assisted ISF -- 9.5 Improvements by the Hybrid ISF Variants -- Acknowledgments -- References -- 10 IMKS and IMMS---Two Integrated Methods for the One-Step-Production of Plastic/Metal Hybrid Parts -- Abstract -- 10.1 Introduction -- 10.2 Integrated Metal/Plastics Injection Moulding (IMKS) -- 10.2.1 Device for the Processing of Low-Melting Metal Alloys -- 10.2.2 IMKS Mould Technology -- 10.2.3 Influence of Variothermal Mould Temperature Control on the Achievable Conductive Track Length -- 10.3 In-Mould-Metal-Spraying (IMMS) -- 10.3.1 Selection of Materials and Thermal Spraying Process -- 10.4 Conclusion and Outlook -- Acknowledgments -- References -- Part VSelf-Optimising Production Systems -- 11 A Symbolic Approach to Self-optimisation in Production System Analysis and Control -- 11.1 Introduction -- 11.2 Cognitive Automation -- 11.2.1 Cognitive Automation of Assembly Tasks -- 11.2.2 Adaptive Planning for Human-Robot Interaction -- 11.3 Embedding the Cognitive Control Unit into an Architecture for Self-optimising Production Systems -- 11.4 System Validation -- 11.5 Summary and Outlook -- Acknowledgments -- References -- 12 Approaches of Self-optimising Systems in Manufacturing -- Abstract -- 12.1 Self-optimising Systems in Manufacturing -- 12.2 Autonomous Generation of Technological Models -- 12.2.1 Interactive Human Machine Interface -- 12.2.2 Planning and Organisation of Milling Tests -- 12.2.3 Automated Execution of Milling Tests -- 12.2.4 Modelling and Evaluation -- 12.3 Self-optimised Injection Moulding -- 12.4 Summary and Outlook -- Acknowledgment -- References -- 13 Adaptive Workplace Design Based on Biomechanical Stress Curves -- Abstract -- 13.1 Introduction.

13.2 Capabilities of Existing Methods of Workplace Design in Context of Self-optimizing Production Systems -- 13.3 Use of Biomechanical Human Models for Workplace Design -- 13.4 Approach for Body Part-Oriented Indication of Physiological Strain in Real Time -- 13.5 Use of Biomechanical Stress Curves in Context of Adaptive Workplace Design -- 13.6 Conclusion and Outlook -- References -- Part VIHuman Factors in Production Technology -- 14 Human Factors in Production Systems -- Abstract -- 14.1 Motives for Integrating Human Factors in Production Engineering---the Challenge -- 14.1.1 The Contribution of the Social Sciences -- 14.2 Methods for Understanding and Quantifying Human Factors---the Potential -- 14.2.1 Metrics, Procedures and Empirical Approaches -- 14.2.2 Case Studies---Examples of the Potential of Exploring Human Factors -- 14.3 Beyond---How to Amend Productivity with Quality of (Work)Life---the Vision -- 14.3.1 Enabling Communication in Interdisciplinary Teams -- 14.3.2 Motivators for High Performance Cultures -- Acknowledgments -- References -- 15 Human Factors in Product Development and Design -- 15.1 Introduction -- 15.2 The Human Perception of Quality -- 15.3 The Manifestation of Human Perception and Cognition -- 15.4 Human Oriented Product Development Processes -- Acknowledgment -- References.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

yorum yazmak için.

Ziyaretçi Sayısı

Destekleyen Koha