Aquaculture Perspective of Multi-Use Sites in the Open Ocean : The Untapped Potential for Marine Resources in the Anthropocene.

Yazar:Buck, Bela H
Katkıda bulunan(lar):Langan, Richard
Materyal türü: KonuKonuYayıncı: Cham : Springer International Publishing AG, 2017Telif hakkı tarihi: �2017Tanım: 1 online resource (413 pages)İçerik türü:text Ortam türü:computer Taşıyıcı türü: online resourceISBN: 9783319511597Tür/Form:Electronic books.Ek fiziksel biçimler:Print version:: Aquaculture Perspective of Multi-Use Sites in the Open OceanDDC sınıflandırma: 639.89 LOC classification: GB651-2998Çevrimiçi kaynaklar: Click to View
İçindekiler:
Intro -- Preface -- The Global Imperative to Develop New Models of Open Ocean Aquaculture for Accelerating Large-Scale Food and Energy Production -- ReferencesBarange, M., Merino, G. Blanchard, J. L., Scholtens, J., Harle, J., Ellison, E. H. et al. (2014). Impacts of climate change on marine ecosystem production in fisheries-dependent societies. Nature Climate Change, 4, 211-216.Barents Observer. (2015). Norway and Russia agree on Barents Sea quotas for 2015. Kirkenes, Norway. Retrieved October 20, 2016, from http://barentsobserver.com/en/nature/2014/10/norway-and-russia-agree-barents-sea-quotas-2015-10-10.Costa-Pierce, B. A. (2016). Ocean f -- Contents -- Editors and Contributors -- Abbreviations -- 1 Introduction: New Approaches to Sustainable Offshore Food Production and the Development of Offshore Platforms -- Abstract -- 1.1 Aquaculture-A Historical Overview -- 1.2 Moving Aquaculture Operations Offshore -- 1.3 The Multi-use Concept -- 1.3.1 Pilot Projects in Russia -- 1.3.2 Pilot Projects in the USA -- 1.3.3 Pilot Projects in Germany -- 1.4 Initiation to the Topic -- References -- Species, Techniques and System Design -- 2 Offshore and Multi-Use Aquaculture with Extractive Species: Seaweeds and Bivalves -- Abstract -- 2.1 Sustainable Aquaculture -- 2.2 Introduction to Extractive Species -- 2.3 IMTA on Offshore Applications -- 2.4 Extractive Species Aquaculture -- 2.4.1 Seaweeds -- 2.4.2 Bivalves -- 2.5 Cultivation Technologies, Challenges and Future Directions in Major Cultured Extractive Species -- 2.5.1 Red Seaweeds -- 2.5.1.1 Pyropia and Porphyra ('Gim' in Korean or 'Nori' in Japanese) -- 2.5.2 Brown Seaweeds -- 2.5.2.1 Saccharina and Undaria -- 2.5.2.2 Sargassum -- 2.5.3 Bivalves -- 2.5.3.1 Mussels -- 2.5.3.2 Oysters -- 2.6 Current Status of Offshore Seaweed and Bivalve Production and Their Potential for Multi-Use -- 2.6.1 Germany.
2.6.2 Belgium -- 2.6.3 Norway -- 2.6.4 Denmark -- 2.6.5 The Netherlands -- 2.6.6 France -- 2.6.7 United Kingdom -- 2.6.8 Italy -- 2.6.9 The United States -- 2.6.10 The Republic of Korea -- 2.6.11 China -- 2.7 Ecosystem Services -- 2.8 Concluding Remarks and Outlook -- References -- 3 Technological Approaches to Longline- and Cage-Based Aquaculture in Open Ocean Environments -- Abstract -- 3.1 Introduction -- 3.2 Case Study on Long Lines -- 3.2.1 Mussel Farming Development in NZ -- 3.2.2 Oyster Farming in the Open Ocean -- 3.3 Case Study on Submerged Aquaculture -- 3.3.1 Open Ocean Aquaculture in New Hampshire, USA -- 3.4 Case Study on Multi-use on Open Ocean Environment -- 3.4.1 Methodology -- 3.4.2 Velocity, Force and Scour Regimes -- 3.5 Discussion and Conclusions -- References -- 4 Operation and Maintenance Costs of Offshore Wind Farms and Potential Multi-use Platforms in the Dutch North Sea -- Abstract -- 4.1 Introduction -- 4.2 Offshore Operation and Maintenance Activities -- 4.2.1 Accessibility of Offshore Wind Farms -- 4.2.2 Infrastructure for Cabling and Cable Repair -- 4.2.3 Trained Staff -- 4.2.4 Dutch Offshore Wind Energy Services (DOWES) -- 4.2.5 Analysis of Operation and Maintenance Costs -- 4.3 Potential for Synergy -- 4.3.1 Operations and Life Cycle Management -- 4.3.2 Inspective, Preventive, Corrective Maintenance and Improvement Maintenance -- 4.3.3 Asset Management Control (AMC) Model -- 4.4 Conclusions -- Annex 1-Transport System Details -- Subsea Power Cable Subsystem -- Offshore Wind and Fish Farming Support Ships -- Tooling and Spars Container Support System -- Mussel Harvest Subsystems -- References -- 5 Technical Risks of Offshore Structures -- Abstract -- 5.1 Introduction -- 5.2 Corrosion Aspects and Biofouling -- 5.2.1 Corrosion Mechanisms and Corrosivity Zones for Offshore Structures.
5.2.2 Corrosion Risks in Currently Used Offshore Wind Turbines -- 5.2.3 Biofouling on Offshore Structures -- 5.2.4 Potential Influence of Offshore Aquaculture on the Corrosion of Unprotected Steel Structures -- 5.3 Mechanical Risks of Wind Farms Due to the Presence of Offshore Aquaculture Constructions -- 5.4 Scenario Analyses -- 5.5 Conclusions and Recommendations -- References -- Aquaculture Governance -- 6 Aquaculture Site-Selection and Marine Spatial Planning: The Roles of GIS-Based Tools and Models -- Abstract -- 6.1 Reconciling Ocean Uses Through Marine Spatial Planning -- 6.2 Potential Benefits of MSP to Aquaculture -- 6.3 Decision Support Systems for MSP and Aquaculture Siting -- 6.3.1 The Importance of Spatial Data in the Planning Process -- 6.3.2 DSS for Aquaculture Siting -- 6.4 The Co-location Scenario: Combining Offshore Wind Energy and Aquaculture -- 6.4.1 Co-location as an Opportunity for Spatial Planning? -- 6.4.2 Case Study in the German Bight -- 6.5 Conclusions and Future Needs -- Acknowledgements -- References -- 7 Governance and Offshore Aquaculture in Multi-resource Use Settings -- Abstract -- 7.1 Introduction -- 7.2 Defining Governance, Management and Policy -- 7.3 Developing a Multi-level Governance Framework for Offshore Aquaculture -- 7.4 Knowledge and Information Gaps in Offshore Aquaculture Multi-use Governance -- 7.5 Outlook -- References -- 8 The Socio-economic Dimensions of Offshore Aquaculture in a Multi-use Setting -- Abstract -- 8.1 Background -- 8.2 Socio-economic Dimensions of Aquaculture-A First Typology -- 8.2.1 Attitudes to and Perceptions of Aquaculture -- 8.2.2 Organization of and Participation in Planning for Aquaculture -- 8.2.3 Direct Benefits of Aquaculture, and Their Distribution -- 8.2.4 Negative Effects of Aquaculture Production Activities and Conflicts with Other Interests.
8.2.5 Effects on the Wider Economic and Innovation System -- 8.2.6 Effects on Cultural Fabric and Other Social Aspects -- 8.3 Current Knowledge on Socio-economic Effects of Offshore Aquaculture -- 8.4 Implications for Assessing the Socio-economic Effects of Offshore Aquaculture in a Multi-use Setting -- 8.5 Outlook -- Acknowledgements -- References -- 9 Regulation and Permitting of Standalone and Co-located Open Ocean Aquaculture Facilities -- Abstract -- 9.1 Introduction -- 9.1.1 Cultured Seafood Trends -- 9.1.2 Ocean Energy Trends -- 9.2 Status of Commercial Offshore Aquaculture -- 9.2.1 Standalone Aquaculture Projects -- 9.2.2 Aquaculture Co-located with Platforms -- 9.3 Case Studies on Permitting and Regulation -- 9.3.1 Introduction -- 9.3.2 Regulating Finfish Aquaculture in the U.S. EEZ, a Regional Approach -- 9.3.2.1 Background -- 9.3.2.2 A Path Forward -- 9.3.2.3 The Gulf Council Permit Process -- Core Terms -- Description of the Application -- Description of the Permit Process -- Consultations -- Operational and Monitoring Requirements -- Sanctions and Denials -- 9.3.2.4 Other Required Permits -- DA Section 10 Permit, ACOE- -- National Pollution Discharge Elimination System (NPDES), EPA -- 9.3.2.5 Successful State Permit/Leasing Processes -- Maine -- Hawaii -- 9.3.2.6 Discussion -- Evolution of the Regional Approach -- The Gulf Plan Rules, Concerns -- Core Terms, Concerns -- The Application, Concerns -- Operating and Monitoring Requirements, Concerns -- Comparison with State Processes -- 9.3.3 Case Study-Shellfish Farming in the Northeastern and West Coasts of the U.S., Recent Examples -- 9.3.3.1 Catalina Sea Ranch-First Farm Permitted in Federal Waters -- Catalina Sea Ranch's Offshore Mariculture Monitoring Program -- 9.3.3.2 Massachusetts Case Studies-A Tale of Two Projects -- Cape Ann Mussel Farm -- Nantucket Sound Mussel Farm.
9.3.3.3 Discussion -- 9.3.4 Case Study: Mussel Farming Off the English Coast -- One Farmer's Experience -- 9.3.4.1 Introduction -- 9.3.4.2 Description of Farm -- 9.3.4.3 Legislatory Framework -- 9.3.4.4 Application Process -- Informal Consultation -- Coast Protection Act 1949 -- Section 34 -- Seabed Lease -- Aquaculture Production Business -- Shellfish Harvesting Area Classification -- 9.3.4.5 Discussion of Current Licensing Process -- Environmental Impact -- Socio-Economic Impact -- 9.3.4.6 Discussion-Future Regulation and Co-location of Offshore Aquaculture -- 9.4 Recommendations for Developing a Regulatory System -- 9.4.1 Planning a Regulatory System -- 9.4.2 The Regulatory System -- References -- Aquaculture Economics -- 10 Economics of Multi-use and Co-location -- Abstract -- 10.1 Introduction -- 10.2 Ocean Space as an Input to Economic Production -- 10.2.1 Production Function -- 10.2.2 Unit Values -- 10.3 Public Benefits from Multi-use and Co-location -- 10.4 Private Benefits from Multi-use and Co-location -- 10.5 Case Study: Mussel Culture and Wind Farms in the Netherlands -- 10.6 Conclusions -- References -- Case Studies -- 11 The German Case Study: Pioneer Projects of Aquaculture-Wind Farm Multi-Uses -- Abstract -- 11.1 Introduction -- 11.2 The Beginning -- 11.3 Potential Species for Offshore Aquaculture -- 11.3.1 Seaweed Species -- 11.3.1.1 Candidate: Laminarian Species -- 11.3.1.2 Candidate: Palmaria palmata -- 11.3.1.3 Candidate: Delesseria sanguinea -- 11.3.2 Bivalve Species -- 11.3.2.1 Candidate: Mytilus edulis -- 11.3.2.2 Candidates: Crassostrea gigas and Ostrea edulis -- 11.3.3 Crustacean Species -- 11.3.3.1 Candidate: Homarus gammarus -- 11.3.3.2 Candidate: Cancer pagurus -- 11.3.4 Fish Species -- 11.3.4.1 Candidate: Dicentrarchus labrax -- 11.3.4.2 Candidate: Gadus morhua -- 11.3.4.3 Candidate: Hippoglossus hippoglossus.
11.3.4.4 Candidate: Scophthalmus maximus.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
    Ortalama derecelendirme: 0.0 (0 oy)
Bu kayda ilişkin materyal yok

Intro -- Preface -- The Global Imperative to Develop New Models of Open Ocean Aquaculture for Accelerating Large-Scale Food and Energy Production -- ReferencesBarange, M., Merino, G. Blanchard, J. L., Scholtens, J., Harle, J., Ellison, E. H. et al. (2014). Impacts of climate change on marine ecosystem production in fisheries-dependent societies. Nature Climate Change, 4, 211-216.Barents Observer. (2015). Norway and Russia agree on Barents Sea quotas for 2015. Kirkenes, Norway. Retrieved October 20, 2016, from http://barentsobserver.com/en/nature/2014/10/norway-and-russia-agree-barents-sea-quotas-2015-10-10.Costa-Pierce, B. A. (2016). Ocean f -- Contents -- Editors and Contributors -- Abbreviations -- 1 Introduction: New Approaches to Sustainable Offshore Food Production and the Development of Offshore Platforms -- Abstract -- 1.1 Aquaculture-A Historical Overview -- 1.2 Moving Aquaculture Operations Offshore -- 1.3 The Multi-use Concept -- 1.3.1 Pilot Projects in Russia -- 1.3.2 Pilot Projects in the USA -- 1.3.3 Pilot Projects in Germany -- 1.4 Initiation to the Topic -- References -- Species, Techniques and System Design -- 2 Offshore and Multi-Use Aquaculture with Extractive Species: Seaweeds and Bivalves -- Abstract -- 2.1 Sustainable Aquaculture -- 2.2 Introduction to Extractive Species -- 2.3 IMTA on Offshore Applications -- 2.4 Extractive Species Aquaculture -- 2.4.1 Seaweeds -- 2.4.2 Bivalves -- 2.5 Cultivation Technologies, Challenges and Future Directions in Major Cultured Extractive Species -- 2.5.1 Red Seaweeds -- 2.5.1.1 Pyropia and Porphyra ('Gim' in Korean or 'Nori' in Japanese) -- 2.5.2 Brown Seaweeds -- 2.5.2.1 Saccharina and Undaria -- 2.5.2.2 Sargassum -- 2.5.3 Bivalves -- 2.5.3.1 Mussels -- 2.5.3.2 Oysters -- 2.6 Current Status of Offshore Seaweed and Bivalve Production and Their Potential for Multi-Use -- 2.6.1 Germany.

2.6.2 Belgium -- 2.6.3 Norway -- 2.6.4 Denmark -- 2.6.5 The Netherlands -- 2.6.6 France -- 2.6.7 United Kingdom -- 2.6.8 Italy -- 2.6.9 The United States -- 2.6.10 The Republic of Korea -- 2.6.11 China -- 2.7 Ecosystem Services -- 2.8 Concluding Remarks and Outlook -- References -- 3 Technological Approaches to Longline- and Cage-Based Aquaculture in Open Ocean Environments -- Abstract -- 3.1 Introduction -- 3.2 Case Study on Long Lines -- 3.2.1 Mussel Farming Development in NZ -- 3.2.2 Oyster Farming in the Open Ocean -- 3.3 Case Study on Submerged Aquaculture -- 3.3.1 Open Ocean Aquaculture in New Hampshire, USA -- 3.4 Case Study on Multi-use on Open Ocean Environment -- 3.4.1 Methodology -- 3.4.2 Velocity, Force and Scour Regimes -- 3.5 Discussion and Conclusions -- References -- 4 Operation and Maintenance Costs of Offshore Wind Farms and Potential Multi-use Platforms in the Dutch North Sea -- Abstract -- 4.1 Introduction -- 4.2 Offshore Operation and Maintenance Activities -- 4.2.1 Accessibility of Offshore Wind Farms -- 4.2.2 Infrastructure for Cabling and Cable Repair -- 4.2.3 Trained Staff -- 4.2.4 Dutch Offshore Wind Energy Services (DOWES) -- 4.2.5 Analysis of Operation and Maintenance Costs -- 4.3 Potential for Synergy -- 4.3.1 Operations and Life Cycle Management -- 4.3.2 Inspective, Preventive, Corrective Maintenance and Improvement Maintenance -- 4.3.3 Asset Management Control (AMC) Model -- 4.4 Conclusions -- Annex 1-Transport System Details -- Subsea Power Cable Subsystem -- Offshore Wind and Fish Farming Support Ships -- Tooling and Spars Container Support System -- Mussel Harvest Subsystems -- References -- 5 Technical Risks of Offshore Structures -- Abstract -- 5.1 Introduction -- 5.2 Corrosion Aspects and Biofouling -- 5.2.1 Corrosion Mechanisms and Corrosivity Zones for Offshore Structures.

5.2.2 Corrosion Risks in Currently Used Offshore Wind Turbines -- 5.2.3 Biofouling on Offshore Structures -- 5.2.4 Potential Influence of Offshore Aquaculture on the Corrosion of Unprotected Steel Structures -- 5.3 Mechanical Risks of Wind Farms Due to the Presence of Offshore Aquaculture Constructions -- 5.4 Scenario Analyses -- 5.5 Conclusions and Recommendations -- References -- Aquaculture Governance -- 6 Aquaculture Site-Selection and Marine Spatial Planning: The Roles of GIS-Based Tools and Models -- Abstract -- 6.1 Reconciling Ocean Uses Through Marine Spatial Planning -- 6.2 Potential Benefits of MSP to Aquaculture -- 6.3 Decision Support Systems for MSP and Aquaculture Siting -- 6.3.1 The Importance of Spatial Data in the Planning Process -- 6.3.2 DSS for Aquaculture Siting -- 6.4 The Co-location Scenario: Combining Offshore Wind Energy and Aquaculture -- 6.4.1 Co-location as an Opportunity for Spatial Planning? -- 6.4.2 Case Study in the German Bight -- 6.5 Conclusions and Future Needs -- Acknowledgements -- References -- 7 Governance and Offshore Aquaculture in Multi-resource Use Settings -- Abstract -- 7.1 Introduction -- 7.2 Defining Governance, Management and Policy -- 7.3 Developing a Multi-level Governance Framework for Offshore Aquaculture -- 7.4 Knowledge and Information Gaps in Offshore Aquaculture Multi-use Governance -- 7.5 Outlook -- References -- 8 The Socio-economic Dimensions of Offshore Aquaculture in a Multi-use Setting -- Abstract -- 8.1 Background -- 8.2 Socio-economic Dimensions of Aquaculture-A First Typology -- 8.2.1 Attitudes to and Perceptions of Aquaculture -- 8.2.2 Organization of and Participation in Planning for Aquaculture -- 8.2.3 Direct Benefits of Aquaculture, and Their Distribution -- 8.2.4 Negative Effects of Aquaculture Production Activities and Conflicts with Other Interests.

8.2.5 Effects on the Wider Economic and Innovation System -- 8.2.6 Effects on Cultural Fabric and Other Social Aspects -- 8.3 Current Knowledge on Socio-economic Effects of Offshore Aquaculture -- 8.4 Implications for Assessing the Socio-economic Effects of Offshore Aquaculture in a Multi-use Setting -- 8.5 Outlook -- Acknowledgements -- References -- 9 Regulation and Permitting of Standalone and Co-located Open Ocean Aquaculture Facilities -- Abstract -- 9.1 Introduction -- 9.1.1 Cultured Seafood Trends -- 9.1.2 Ocean Energy Trends -- 9.2 Status of Commercial Offshore Aquaculture -- 9.2.1 Standalone Aquaculture Projects -- 9.2.2 Aquaculture Co-located with Platforms -- 9.3 Case Studies on Permitting and Regulation -- 9.3.1 Introduction -- 9.3.2 Regulating Finfish Aquaculture in the U.S. EEZ, a Regional Approach -- 9.3.2.1 Background -- 9.3.2.2 A Path Forward -- 9.3.2.3 The Gulf Council Permit Process -- Core Terms -- Description of the Application -- Description of the Permit Process -- Consultations -- Operational and Monitoring Requirements -- Sanctions and Denials -- 9.3.2.4 Other Required Permits -- DA Section 10 Permit, ACOE- -- National Pollution Discharge Elimination System (NPDES), EPA -- 9.3.2.5 Successful State Permit/Leasing Processes -- Maine -- Hawaii -- 9.3.2.6 Discussion -- Evolution of the Regional Approach -- The Gulf Plan Rules, Concerns -- Core Terms, Concerns -- The Application, Concerns -- Operating and Monitoring Requirements, Concerns -- Comparison with State Processes -- 9.3.3 Case Study-Shellfish Farming in the Northeastern and West Coasts of the U.S., Recent Examples -- 9.3.3.1 Catalina Sea Ranch-First Farm Permitted in Federal Waters -- Catalina Sea Ranch's Offshore Mariculture Monitoring Program -- 9.3.3.2 Massachusetts Case Studies-A Tale of Two Projects -- Cape Ann Mussel Farm -- Nantucket Sound Mussel Farm.

9.3.3.3 Discussion -- 9.3.4 Case Study: Mussel Farming Off the English Coast -- One Farmer's Experience -- 9.3.4.1 Introduction -- 9.3.4.2 Description of Farm -- 9.3.4.3 Legislatory Framework -- 9.3.4.4 Application Process -- Informal Consultation -- Coast Protection Act 1949 -- Section 34 -- Seabed Lease -- Aquaculture Production Business -- Shellfish Harvesting Area Classification -- 9.3.4.5 Discussion of Current Licensing Process -- Environmental Impact -- Socio-Economic Impact -- 9.3.4.6 Discussion-Future Regulation and Co-location of Offshore Aquaculture -- 9.4 Recommendations for Developing a Regulatory System -- 9.4.1 Planning a Regulatory System -- 9.4.2 The Regulatory System -- References -- Aquaculture Economics -- 10 Economics of Multi-use and Co-location -- Abstract -- 10.1 Introduction -- 10.2 Ocean Space as an Input to Economic Production -- 10.2.1 Production Function -- 10.2.2 Unit Values -- 10.3 Public Benefits from Multi-use and Co-location -- 10.4 Private Benefits from Multi-use and Co-location -- 10.5 Case Study: Mussel Culture and Wind Farms in the Netherlands -- 10.6 Conclusions -- References -- Case Studies -- 11 The German Case Study: Pioneer Projects of Aquaculture-Wind Farm Multi-Uses -- Abstract -- 11.1 Introduction -- 11.2 The Beginning -- 11.3 Potential Species for Offshore Aquaculture -- 11.3.1 Seaweed Species -- 11.3.1.1 Candidate: Laminarian Species -- 11.3.1.2 Candidate: Palmaria palmata -- 11.3.1.3 Candidate: Delesseria sanguinea -- 11.3.2 Bivalve Species -- 11.3.2.1 Candidate: Mytilus edulis -- 11.3.2.2 Candidates: Crassostrea gigas and Ostrea edulis -- 11.3.3 Crustacean Species -- 11.3.3.1 Candidate: Homarus gammarus -- 11.3.3.2 Candidate: Cancer pagurus -- 11.3.4 Fish Species -- 11.3.4.1 Candidate: Dicentrarchus labrax -- 11.3.4.2 Candidate: Gadus morhua -- 11.3.4.3 Candidate: Hippoglossus hippoglossus.

11.3.4.4 Candidate: Scophthalmus maximus.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

yorum yazmak için.

Ziyaretçi Sayısı

Destekleyen Koha