Interferometry and Synthesis in Radio Astronomy.

Yazar:Thompson, A. Richard
Katkıda bulunan(lar):Moran, James M | Swenson Jr., George W
Materyal türü: KonuKonuSeri kaydı: Yayıncı: Cham : Springer International Publishing AG, 2017Telif hakkı tarihi: �2017Baskı: 3rd edTanım: 1 online resource (910 pages)İçerik türü:text Ortam türü:computer Taşıyıcı türü: online resourceISBN: 9783319444314Tür/Form:Electronic books.Ek fiziksel biçimler:Print version:: Interferometry and Synthesis in Radio AstronomyDDC sınıflandırma: 522 LOC classification: QB4-4.9Çevrimiçi kaynaklar: Click to View
İçindekiler:
Intro -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- Abbreviations and Acronyms -- Principal Symbols -- 1 Introduction and Historical Review -- 1.1 Applications of Radio Interferometry -- 1.2 Basic Terms and Definitions -- 1.2.1 Cosmic Signals -- 1.2.2 Source Positions and Nomenclature -- 1.2.3 Reception of Cosmic Signals -- 1.3 Development of Radio Interferometry -- 1.3.1 Evolution of Synthesis Techniques -- 1.3.2 Michelson Interferometer -- 1.3.3 Early Two-Element Radio Interferometers -- 1.3.4 Sea Interferometer -- 1.3.5 Phase-Switching Interferometer -- 1.3.6 Optical Identifications and Calibration Sources -- 1.3.7 Early Measurements of Angular Width -- 1.3.8 Early Survey Interferometers and the Mills Cross -- 1.3.9 Centimeter-Wavelength Solar Imaging -- 1.3.10 Measurements of Intensity Profiles -- 1.3.11 Spectral Line Interferometry -- 1.3.12 Earth-Rotation Synthesis Imaging -- 1.3.13 Development of Synthesis Arrays -- 1.3.14 Very-Long-Baseline Interferometry -- 1.3.15 VLBI Using Orbiting Antennas -- 1.4 Quantum Effect -- Appendix 1.1 Sensitivity of Radio Astronomical Receivers (the Radiometer Equation) -- Further Reading -- Textbooks on Radio Astronomy and Radio Interferometry -- Historical Reviews -- General Interest -- References -- 2 Introductory Theory of Interferometry and Synthesis Imaging -- 2.1 Planar Analysis -- 2.2 Effect of Bandwidth -- 2.3 One-Dimensional Source Synthesis -- 2.3.1 Interferometer Response as a Convolution -- 2.3.2 Convolution Theorem and Spatial Frequency -- 2.3.3 Example of One-Dimensional Synthesis -- 2.4 Two-Dimensional Synthesis -- 2.4.1 Projection-Slice Theorem -- 2.4.2 Three-Dimensional Imaging -- Appendix 2.1 A Practical Fourier Transform Primer -- A2.1.1 Useful Fourier Transform Pairs -- A2.1.2 Basic Fourier Transform Properties.
A2.1.3 Two-Dimensional Fourier Transform -- A2.1.4 Fourier Series -- A2.1.5 Truncated Functions -- References -- 3 Analysis of the Interferometer Response -- 3.1 Fourier Transform Relationship Between Intensityand Visibility -- 3.1.1 General Case -- 3.1.2 East-West Linear Arrays -- 3.2 Cross-Correlation and the Wiener-Khinchin Relation -- 3.3 Basic Response of the Receiving System -- 3.3.1 Antennas -- 3.3.2 Filters -- 3.3.3 Correlator -- 3.3.4 Response to the Incident Radiation -- Appendix 3.1 Mathematical Representation of Noiselike Signals -- A3.1.1 Analytic Signal -- A3.1.2 Truncated Function -- References -- 4 Geometrical Relationships, Polarimetry, and the Interferometer Measurement Equation -- 4.1 Antenna Spacing Coordinates and (u,v) Loci -- 4.2 (u',v') Plane -- 4.3 Fringe Frequency -- 4.4 Visibility Frequencies -- 4.5 Calibration of the Baseline -- 4.6 Antennas -- 4.6.1 Antenna Mounts -- 4.6.2 Beamwidth and Beam-Shape Effects -- 4.7 Polarimetry -- 4.7.1 Antenna Polarization Ellipse -- 4.7.2 Stokes Visibilities -- 4.7.3 Instrumental Polarization -- 4.7.4 Matrix Formulation -- 4.7.5 Calibration of Instrumental Polarization -- 4.8 The Interferometer Measurement Equation -- 4.8.1 Multibaseline Formulation -- Appendix 4.1 Hour Angle-Declination and Elevation-Azimuth Relationships -- Appendix 4.2 Leakage Parameters in Terms of the Polarization Ellipse -- A4.2.1 Linear Polarization -- A4.2.2 Circular Polarization -- References -- 5 Antennas and Arrays -- 5.1 Antennas -- 5.2 Sampling the Visibility Function -- 5.2.1 Sampling Theorem -- 5.2.2 Discrete Two-Dimensional Fourier Transform -- 5.3 Introductory Discussion of Arrays -- 5.3.1 Phased Arrays and Correlator Arrays -- 5.3.2 Spatial Sensitivity and the Spatial TransferFunction -- 5.3.3 Meter-Wavelength Cross and T-Shaped Arrays -- 5.4 Spatial Transfer Function of a Tracking Array.
5.4.1 Desirable Characteristics of the Spatial Transfer Function -- 5.4.2 Holes in the Spatial Frequency Coverage -- 5.5 Linear Tracking Arrays -- 5.6 Two-Dimensional Tracking Arrays -- 5.6.1 Open-Ended Configurations -- 5.6.2 Closed Configurations -- 5.6.3 VLBI Configurations -- 5.6.4 Orbiting VLBI Antennas -- 5.6.5 Planar Arrays -- 5.6.6 Some Conclusions on Antenna Configurations -- 5.7 Implementation of Large Arrays -- 5.7.1 Low-Frequency Range -- 5.7.2 Midfrequency and Higher Ranges -- 5.7.2.1 Phased-Array Feeds -- 5.7.2.2 Optimum Antenna Size -- 5.7.3 Development of Extremely Large Arrays -- 5.7.4 The Direct Fourier Transform Telescope -- Further Reading -- References -- 6 Response of the Receiving System -- 6.1 Frequency Conversion, Fringe Rotation,and Complex Correlators -- 6.1.1 Frequency Conversion -- 6.1.2 Response of a Single-Sideband System -- 6.1.3 Upper-Sideband Reception -- 6.1.4 Lower-Sideband Reception -- 6.1.5 Multiple Frequency Conversions -- 6.1.6 Delay Tracking and Fringe Rotation -- 6.1.7 Simple and Complex Correlators -- 6.1.8 Response of a Double-Sideband System -- 6.1.9 Double-Sideband System with Multiple Frequency Conversions -- 6.1.10 Fringe Stopping in a Double-Sideband System -- 6.1.11 Relative Advantages of Double- and Single-Sideband Systems -- 6.1.12 Sideband Separation -- 6.2 Response to the Noise -- 6.2.1 Signal and Noise Processing in the Correlator -- 6.2.2 Noise in the Measurement of Complex Visibility -- 6.2.3 Signal-to-Noise Ratio in a Synthesized Image -- 6.2.4 Noise in Visibility Amplitude and Phase -- 6.2.5 Relative Sensitivities of Different Interferometer Systems -- 6.2.6 System Temperature Parameter (Sa(B -- 6.3 Effect of Bandwidth -- 6.3.1 Imaging in the Continuum Mode -- 6.3.2 Wide-Field Imaging with a Multichannel System -- 6.4 Effect of Visibility Averaging -- 6.4.1 Visibility Averaging Time.
6.4.2 Effect of Time Averaging -- 6.5 Speed of Surveying -- Appendix 6.1 Partial Rejection of a Sideband -- References -- 7 System Design -- 7.1 Principal Subsystems of the Receiving Electronics -- 7.1.1 Low-Noise Input Stages -- 7.1.2 Noise Temperature Measurement -- 7.1.3 Local Oscillator -- 7.1.4 IF and Signal Transmission Subsystems -- 7.1.5 Optical Fiber Transmission -- 7.1.6 Delay and Correlator Subsystems -- 7.2 Local Oscillator and General Considerationsof Phase Stability -- 7.2.1 Round-Trip Phase Measurement Schemes -- 7.2.2 Swarup and Yang System -- 7.2.3 Frequency-Offset Round-Trip System -- 7.2.4 Automatic Correction System -- 7.2.5 Fiberoptic Transmission of LO Signals -- 7.2.6 Phase-Locked Loops and Reference Frequencies -- 7.2.7 Phase Stability of Filters -- 7.2.8 Effect of Phase Errors -- 7.3 Frequency Responses of the Signal Channels -- 7.3.1 Optimum Response -- 7.3.2 Tolerances on Variation of the Frequency Response: Degradation of Sensitivity -- 7.3.3 Tolerances on Variation of the Frequency Response: Gain Errors -- 7.3.4 Delay and Phase Errors in Single- and Double-Sideband Systems -- 7.3.5 Delay Errors and Tolerances -- 7.3.6 Phase Errors and Degradation of Sensitivity -- 7.3.7 Other Methods of Mitigation of Delay Errors -- 7.3.8 Multichannel (Spectral Line) Correlator Systems -- 7.3.9 Double-Sideband Systems -- 7.4 Polarization Mismatch Errors -- 7.5 Phase Switching -- 7.5.1 Reduction of Response to Spurious Signals -- 7.5.2 Implementation of Phase Switching -- 7.5.3 Timing Accuracy in Phase Switching -- 7.5.4 Interaction of Phase Switching with Fringe Rotation and Delay Adjustment -- 7.6 Automatic Level Control and Gain Calibration -- 7.7 Fringe Rotation -- Appendix 7.1 Sideband-Separating Mixers -- Appendix 7.2 Dispersion in Optical Fiber -- Appendix 7.3 Alias Sampling -- References -- 8 Digital Signal Processing.
8.1 Bivariate Gaussian Probability Distribution -- 8.2 Periodic Sampling -- 8.2.1 Nyquist Rate -- 8.2.2 Correlation of Sampled but UnquantizedWaveforms -- 8.3 Sampling with Quantization -- 8.3.1 Two-Level Quantization -- 8.3.2 Four-Level Quantization -- 8.3.3 Three-Level Quantization -- 8.3.4 Quantization Efficiency: Simplified Analysis for Four or More Levels -- 8.3.5 Quantization Efficiency: Full Analysis, Three or More Levels -- 8.3.6 Correlation Estimates for Strong Sources -- 8.4 Further Effects of Quantization -- 8.4.1 Correlation Coefficient for Quantized Data -- 8.4.2 Oversampling -- 8.4.3 Quantization Levels and Data Processing -- 8.5 Accuracy in Digital Sampling -- 8.5.1 Tolerances in Digital Sampling Levels -- 8.6 Digital Delay Circuits -- 8.7 Quadrature Phase Shift of a Digital Signal -- 8.8 Digital Correlators -- 8.8.1 Correlators for Continuum Observations -- 8.8.2 Digital Spectral Line Measurements -- 8.8.3 Lag (XF) Correlator -- 8.8.4 FX Correlator -- 8.8.5 Comparison of XF and FX Correlators -- 8.8.6 Hybrid Correlator -- 8.8.7 Demultiplexing in Broadband Correlators -- 8.8.8 Examples of Bandwidths and Bit DataQuantization -- 8.8.9 Polyphase Filter Banks -- 8.8.10 Software Correlators -- Appendix 8.1 Evaluation of ∞q=1R2∞(q(Sx(Bs) -- Appendix 8.2 Probability Integral for Two-Level Quantization -- Appendix 8.3 Optimal Performance for Four-Level Quantization -- Appendix 8.4 Introduction to the Discrete Fourier Transform -- A8.4.1 Response to a Complex Sine Wave -- A8.4.2 Padding with Zeros -- Further Reading -- References -- 9 Very-Long-Baseline Interferometry -- 9.1 Early Development -- 9.2 Differences Between VLBI and Conventional Interferometry -- 9.2.1 The Problem of Field of View -- 9.3 Basic Performance of a VLBI System -- 9.3.1 Time and Frequency Errors -- 9.3.2 Retarded Baselines -- 9.3.3 Noise in VLBI Observations.
9.3.4 Probability of Error in the Signal Search.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
    Ortalama derecelendirme: 0.0 (0 oy)
Bu kayda ilişkin materyal yok

Intro -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- Abbreviations and Acronyms -- Principal Symbols -- 1 Introduction and Historical Review -- 1.1 Applications of Radio Interferometry -- 1.2 Basic Terms and Definitions -- 1.2.1 Cosmic Signals -- 1.2.2 Source Positions and Nomenclature -- 1.2.3 Reception of Cosmic Signals -- 1.3 Development of Radio Interferometry -- 1.3.1 Evolution of Synthesis Techniques -- 1.3.2 Michelson Interferometer -- 1.3.3 Early Two-Element Radio Interferometers -- 1.3.4 Sea Interferometer -- 1.3.5 Phase-Switching Interferometer -- 1.3.6 Optical Identifications and Calibration Sources -- 1.3.7 Early Measurements of Angular Width -- 1.3.8 Early Survey Interferometers and the Mills Cross -- 1.3.9 Centimeter-Wavelength Solar Imaging -- 1.3.10 Measurements of Intensity Profiles -- 1.3.11 Spectral Line Interferometry -- 1.3.12 Earth-Rotation Synthesis Imaging -- 1.3.13 Development of Synthesis Arrays -- 1.3.14 Very-Long-Baseline Interferometry -- 1.3.15 VLBI Using Orbiting Antennas -- 1.4 Quantum Effect -- Appendix 1.1 Sensitivity of Radio Astronomical Receivers (the Radiometer Equation) -- Further Reading -- Textbooks on Radio Astronomy and Radio Interferometry -- Historical Reviews -- General Interest -- References -- 2 Introductory Theory of Interferometry and Synthesis Imaging -- 2.1 Planar Analysis -- 2.2 Effect of Bandwidth -- 2.3 One-Dimensional Source Synthesis -- 2.3.1 Interferometer Response as a Convolution -- 2.3.2 Convolution Theorem and Spatial Frequency -- 2.3.3 Example of One-Dimensional Synthesis -- 2.4 Two-Dimensional Synthesis -- 2.4.1 Projection-Slice Theorem -- 2.4.2 Three-Dimensional Imaging -- Appendix 2.1 A Practical Fourier Transform Primer -- A2.1.1 Useful Fourier Transform Pairs -- A2.1.2 Basic Fourier Transform Properties.

A2.1.3 Two-Dimensional Fourier Transform -- A2.1.4 Fourier Series -- A2.1.5 Truncated Functions -- References -- 3 Analysis of the Interferometer Response -- 3.1 Fourier Transform Relationship Between Intensityand Visibility -- 3.1.1 General Case -- 3.1.2 East-West Linear Arrays -- 3.2 Cross-Correlation and the Wiener-Khinchin Relation -- 3.3 Basic Response of the Receiving System -- 3.3.1 Antennas -- 3.3.2 Filters -- 3.3.3 Correlator -- 3.3.4 Response to the Incident Radiation -- Appendix 3.1 Mathematical Representation of Noiselike Signals -- A3.1.1 Analytic Signal -- A3.1.2 Truncated Function -- References -- 4 Geometrical Relationships, Polarimetry, and the Interferometer Measurement Equation -- 4.1 Antenna Spacing Coordinates and (u,v) Loci -- 4.2 (u',v') Plane -- 4.3 Fringe Frequency -- 4.4 Visibility Frequencies -- 4.5 Calibration of the Baseline -- 4.6 Antennas -- 4.6.1 Antenna Mounts -- 4.6.2 Beamwidth and Beam-Shape Effects -- 4.7 Polarimetry -- 4.7.1 Antenna Polarization Ellipse -- 4.7.2 Stokes Visibilities -- 4.7.3 Instrumental Polarization -- 4.7.4 Matrix Formulation -- 4.7.5 Calibration of Instrumental Polarization -- 4.8 The Interferometer Measurement Equation -- 4.8.1 Multibaseline Formulation -- Appendix 4.1 Hour Angle-Declination and Elevation-Azimuth Relationships -- Appendix 4.2 Leakage Parameters in Terms of the Polarization Ellipse -- A4.2.1 Linear Polarization -- A4.2.2 Circular Polarization -- References -- 5 Antennas and Arrays -- 5.1 Antennas -- 5.2 Sampling the Visibility Function -- 5.2.1 Sampling Theorem -- 5.2.2 Discrete Two-Dimensional Fourier Transform -- 5.3 Introductory Discussion of Arrays -- 5.3.1 Phased Arrays and Correlator Arrays -- 5.3.2 Spatial Sensitivity and the Spatial TransferFunction -- 5.3.3 Meter-Wavelength Cross and T-Shaped Arrays -- 5.4 Spatial Transfer Function of a Tracking Array.

5.4.1 Desirable Characteristics of the Spatial Transfer Function -- 5.4.2 Holes in the Spatial Frequency Coverage -- 5.5 Linear Tracking Arrays -- 5.6 Two-Dimensional Tracking Arrays -- 5.6.1 Open-Ended Configurations -- 5.6.2 Closed Configurations -- 5.6.3 VLBI Configurations -- 5.6.4 Orbiting VLBI Antennas -- 5.6.5 Planar Arrays -- 5.6.6 Some Conclusions on Antenna Configurations -- 5.7 Implementation of Large Arrays -- 5.7.1 Low-Frequency Range -- 5.7.2 Midfrequency and Higher Ranges -- 5.7.2.1 Phased-Array Feeds -- 5.7.2.2 Optimum Antenna Size -- 5.7.3 Development of Extremely Large Arrays -- 5.7.4 The Direct Fourier Transform Telescope -- Further Reading -- References -- 6 Response of the Receiving System -- 6.1 Frequency Conversion, Fringe Rotation,and Complex Correlators -- 6.1.1 Frequency Conversion -- 6.1.2 Response of a Single-Sideband System -- 6.1.3 Upper-Sideband Reception -- 6.1.4 Lower-Sideband Reception -- 6.1.5 Multiple Frequency Conversions -- 6.1.6 Delay Tracking and Fringe Rotation -- 6.1.7 Simple and Complex Correlators -- 6.1.8 Response of a Double-Sideband System -- 6.1.9 Double-Sideband System with Multiple Frequency Conversions -- 6.1.10 Fringe Stopping in a Double-Sideband System -- 6.1.11 Relative Advantages of Double- and Single-Sideband Systems -- 6.1.12 Sideband Separation -- 6.2 Response to the Noise -- 6.2.1 Signal and Noise Processing in the Correlator -- 6.2.2 Noise in the Measurement of Complex Visibility -- 6.2.3 Signal-to-Noise Ratio in a Synthesized Image -- 6.2.4 Noise in Visibility Amplitude and Phase -- 6.2.5 Relative Sensitivities of Different Interferometer Systems -- 6.2.6 System Temperature Parameter (Sa(B -- 6.3 Effect of Bandwidth -- 6.3.1 Imaging in the Continuum Mode -- 6.3.2 Wide-Field Imaging with a Multichannel System -- 6.4 Effect of Visibility Averaging -- 6.4.1 Visibility Averaging Time.

6.4.2 Effect of Time Averaging -- 6.5 Speed of Surveying -- Appendix 6.1 Partial Rejection of a Sideband -- References -- 7 System Design -- 7.1 Principal Subsystems of the Receiving Electronics -- 7.1.1 Low-Noise Input Stages -- 7.1.2 Noise Temperature Measurement -- 7.1.3 Local Oscillator -- 7.1.4 IF and Signal Transmission Subsystems -- 7.1.5 Optical Fiber Transmission -- 7.1.6 Delay and Correlator Subsystems -- 7.2 Local Oscillator and General Considerationsof Phase Stability -- 7.2.1 Round-Trip Phase Measurement Schemes -- 7.2.2 Swarup and Yang System -- 7.2.3 Frequency-Offset Round-Trip System -- 7.2.4 Automatic Correction System -- 7.2.5 Fiberoptic Transmission of LO Signals -- 7.2.6 Phase-Locked Loops and Reference Frequencies -- 7.2.7 Phase Stability of Filters -- 7.2.8 Effect of Phase Errors -- 7.3 Frequency Responses of the Signal Channels -- 7.3.1 Optimum Response -- 7.3.2 Tolerances on Variation of the Frequency Response: Degradation of Sensitivity -- 7.3.3 Tolerances on Variation of the Frequency Response: Gain Errors -- 7.3.4 Delay and Phase Errors in Single- and Double-Sideband Systems -- 7.3.5 Delay Errors and Tolerances -- 7.3.6 Phase Errors and Degradation of Sensitivity -- 7.3.7 Other Methods of Mitigation of Delay Errors -- 7.3.8 Multichannel (Spectral Line) Correlator Systems -- 7.3.9 Double-Sideband Systems -- 7.4 Polarization Mismatch Errors -- 7.5 Phase Switching -- 7.5.1 Reduction of Response to Spurious Signals -- 7.5.2 Implementation of Phase Switching -- 7.5.3 Timing Accuracy in Phase Switching -- 7.5.4 Interaction of Phase Switching with Fringe Rotation and Delay Adjustment -- 7.6 Automatic Level Control and Gain Calibration -- 7.7 Fringe Rotation -- Appendix 7.1 Sideband-Separating Mixers -- Appendix 7.2 Dispersion in Optical Fiber -- Appendix 7.3 Alias Sampling -- References -- 8 Digital Signal Processing.

8.1 Bivariate Gaussian Probability Distribution -- 8.2 Periodic Sampling -- 8.2.1 Nyquist Rate -- 8.2.2 Correlation of Sampled but UnquantizedWaveforms -- 8.3 Sampling with Quantization -- 8.3.1 Two-Level Quantization -- 8.3.2 Four-Level Quantization -- 8.3.3 Three-Level Quantization -- 8.3.4 Quantization Efficiency: Simplified Analysis for Four or More Levels -- 8.3.5 Quantization Efficiency: Full Analysis, Three or More Levels -- 8.3.6 Correlation Estimates for Strong Sources -- 8.4 Further Effects of Quantization -- 8.4.1 Correlation Coefficient for Quantized Data -- 8.4.2 Oversampling -- 8.4.3 Quantization Levels and Data Processing -- 8.5 Accuracy in Digital Sampling -- 8.5.1 Tolerances in Digital Sampling Levels -- 8.6 Digital Delay Circuits -- 8.7 Quadrature Phase Shift of a Digital Signal -- 8.8 Digital Correlators -- 8.8.1 Correlators for Continuum Observations -- 8.8.2 Digital Spectral Line Measurements -- 8.8.3 Lag (XF) Correlator -- 8.8.4 FX Correlator -- 8.8.5 Comparison of XF and FX Correlators -- 8.8.6 Hybrid Correlator -- 8.8.7 Demultiplexing in Broadband Correlators -- 8.8.8 Examples of Bandwidths and Bit DataQuantization -- 8.8.9 Polyphase Filter Banks -- 8.8.10 Software Correlators -- Appendix 8.1 Evaluation of ∞q=1R2∞(q(Sx(Bs) -- Appendix 8.2 Probability Integral for Two-Level Quantization -- Appendix 8.3 Optimal Performance for Four-Level Quantization -- Appendix 8.4 Introduction to the Discrete Fourier Transform -- A8.4.1 Response to a Complex Sine Wave -- A8.4.2 Padding with Zeros -- Further Reading -- References -- 9 Very-Long-Baseline Interferometry -- 9.1 Early Development -- 9.2 Differences Between VLBI and Conventional Interferometry -- 9.2.1 The Problem of Field of View -- 9.3 Basic Performance of a VLBI System -- 9.3.1 Time and Frequency Errors -- 9.3.2 Retarded Baselines -- 9.3.3 Noise in VLBI Observations.

9.3.4 Probability of Error in the Signal Search.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

yorum yazmak için.

Ziyaretçi Sayısı

Destekleyen Koha