Computer Vision Metrics : Survey, Taxonomy, and Analysis.

Yazar:Krig, Scott
Materyal türü: KonuKonuYayıncı: Berkeley, CA : Apress L. P., 2014Telif hakkı tarihi: �2014Tanım: 1 online resource (498 pages)İçerik türü:text Ortam türü:computer Taşıyıcı türü: online resourceISBN: 9781430259305Tür/Form:Electronic books.Ek fiziksel biçimler:Print version:: Computer Vision MetricsLOC classification: T385Çevrimiçi kaynaklar: Click to View
İçindekiler:
Intro -- Contents at a Glance -- Contents -- About the Author -- Acknowledgments -- Introduction -- Chapter 1: Image Capture and Representation -- Image Sensor Technology -- Sensor Materials -- Sensor Photo-Diode Cells -- Sensor Configurations: Mosaic, Foveon, BSI -- Dynamic Range and Noise -- Sensor Processing -- De-Mosaicking -- Dead Pixel Correction -- Color and Lighting Corrections -- Geometric Corrections -- Cameras and Computational Imaging -- Overview of Computational Imaging -- Single-Pixel Computational Cameras -- 2D Computational Cameras -- 3D Depth Camera Systems -- Binocular Stereo -- Structured and Coded Light -- Optical Coding: Diffraction Gratings -- Time-of-Flight Sensors -- Array Cameras -- Radial Cameras -- Plenoptics: Light Field Cameras -- 3D Depth Processing -- Overview of Methods -- Problems in Depth Sensing and Processing -- The Geometric Field and Distortions -- The Horopter Region, Panum's Area, and Depth Fusion -- Cartesian vs. Polar Coordinates: Spherical Projective Geometry -- Depth Granularity -- Correspondence -- Holes and Occlusion -- Surface Reconstruction and Fusion -- Noise -- Monocular Depth Processing -- Multi-View Stereo -- Sparse Methods: PTAM -- Dense Methods: DTAM -- Optical Flow, SLAM, and SFM -- 3D Representations: Voxels, Depth Maps, Meshes, and Point Clouds -- Summary -- Chapter 2: Image Pre-Processing -- Perspectives on Image Processing -- Problems to Solve During Image Pre-Processing -- Vision Pipelines and Image Pre-Processing -- Corrections -- Enhancements -- Preparing Images for Feature Extraction -- Local Binary Family Pre-Processing -- Spectra Family Pre-Processing -- Basis Space Family Pre-Processing -- Polygon Shape Family Pre-Processing -- The Taxonomy of Image Processing Methods -- Point -- Line -- Area -- Algorithmic -- Data Conversions -- Colorimetry -- Overview of Color Management Systems.
Illuminants, White Point, Black Point, and Neutral Axis -- Device Color Models -- Color Spaces and Color Perception -- Gamut Mapping and Rendering Intent -- Practical Considerations for Color Enhancements -- Color Accuracy and Precision -- Spatial Filtering -- Convolutional Filtering and Detection -- Kernel Filtering and Shape Selection -- Shape Selection or Forming Kernels -- Point Filtering -- Noise and Artifact Filtering -- Integral Images and Box Filters -- Edge Detectors -- Kernel Sets: Sobel, Scharr, Prewitt, Roberts, Kirsch, Robinson, and Frei-Chen -- Canny Detector -- Transform Filtering, Fourier, and Others -- Fourier Transform Family -- Fundamentals -- Fourier Family of Transforms -- Other Transforms -- Morphology and Segmentation -- Binary Morphology -- Gray Scale and Color Morphology -- Morphology Optimizations and Refinements -- Euclidean Distance Maps -- Super-Pixel Segmentation -- Graph-based Super-Pixel Methods -- Gradient-Ascent-Based Super-Pixel Methods -- Depth Segmentation -- Color Segmentation -- Thresholding -- Global Thresholding -- Histogram Peaks and Valleys, and Hysteresis Thresholds -- LUT Transforms, Contrast Remapping -- Histogram Equalization and Specification -- Global Auto Thresholding -- Local Thresholding -- Local Histogram Equalization -- Integral Image Contrast Filters -- Local Auto Threshold Methods -- Chapter 3: Global and Regional Features -- Historical Survey of Features -- Key Ideas: Global, Regional, and Local -- 1960s, 1970s, 1980s-Whole-Object Approaches -- Early 1990s-Partial-Object Approaches -- Mid-1990s-Local Feature Approaches -- Late 1990s-Classified Invariant Local Feature Approaches -- Early 2000s-Scene and Object Modeling Approaches -- Mid-2000s-Finer-Grain Feature and Metric Composition Approaches -- Post-2010-Multi-Modal Feature Metrics Fusion -- Textural Analysis.
1950s thru 1970s-Global Uniform Texture Metrics -- 1980s-Structural and Model-Based Approaches for Texture Classification -- 1990s-Optimizations and Refinements to Texture Metrics -- 2000 toToday-More Robust Invariant Texture Metrics and 3D Texture -- Statistical Methods -- Texture Region Metrics -- Edge Metrics -- Edge Density -- Edge Contrast -- Edge Entropy -- Edge Directivity -- Edge Linearity -- Edge Periodicity -- Edge Size -- Edge Primitive Length Total -- Cross-Correlation and Auto-Correlation -- Fourier Spectrum, Wavelets, and Basis Signatures -- Co-Occurrence Matrix, Haralick Features -- Extended SDM Metrics -- Metric 1: Centroid -- Metric 2: Total Coverage -- Metric 3: Low-Frequency Coverage -- Metric 4: Corrected Coverage -- Metric 5: Total Power -- Metric 6: Relative Power -- Metric 7: Locus Mean Density -- Metric 8: Locus Length -- Metric 9: Bin Mean Density -- Metric 10: Containment -- Metric 11. Linearity -- Metric 12: Linearity Strength -- Laws Texture Metrics -- LBP Local Binary Patterns -- Dynamic Textures -- Statistical Region Metrics -- Image Moment Features -- Point Metric Features -- Global Histograms -- Local Region Histograms -- Scatter Diagrams, 3D Histograms -- Multi-Resolution, Multi-Scale Histograms -- Radial Histograms -- Contour or Edge Histograms -- Basis Space Metrics -- Fourier Description -- Walsh-Hadamard Transform -- HAAR Transform -- Slant Transform -- Zernike Polynomials -- Steerable Filters -- Karhunen-Loeve Transform and Hotelling Transform -- Wavelet Transform and Gabor Filters -- Gabor Functions -- Hough Transform and Radon Transform -- Summary -- Chapter 4: Local Feature Design Concepts, Classification, and Learning -- Local Features -- Detectors, Interest Points, Keypoints, Anchor Points, Landmarks -- Descriptors, Feature Description, Feature Extraction -- Sparse Local Pattern Methods.
Local Feature Attributes -- Choosing Feature Descriptors and Interest Points -- Feature Descriptors and Feature Matching -- Criteria for Goodness -- Repeatability, Easy vs. Hard to Find -- Distinctive vs. Indistinctive -- Relative and Absolute Position -- Matching Cost and Correspondence -- Distance Functions -- Early Work on Distance Functions -- Euclidean or Cartesian Distance Metrics -- Euclidean Distance -- Squared Euclidean Distance -- Cosine Distance or Similarity -- Sum of Absolute Differences (SAD) or L1 Norm -- Sum of Squared Differences (SSD) or L2 Norm -- Correlation Distance -- Hellinger Distance -- Grid Distance Metrics -- Manhattan Distance -- Chebyshev Distance -- Statistical Difference Metrics -- Earth Movers Distance (EMD) or Wasserstein Metric -- Mahalanobis Distance -- Bray Curtis Distance -- Canberra Distance -- Binary or Boolean Distance Metrics -- L0 Norm -- Hamming Distance -- Jaccard Similarity and Dissimilarity -- Descriptor Representation -- Coordinate Spaces, Complex Spaces -- Cartesian Coordinates -- Polar and Log Polar Coordinates -- Radial Coordinates -- Spherical Coordinates -- Gauge Coordinates -- Multivariate Spaces, Multimodal Data -- Feature Pyramids -- Descriptor Density -- Interest Point and Descriptor Culling -- Dense vs. Sparse Feature Description -- Descriptor Shape Topologies -- Correlation Templates -- Patches and Shape -- Single Patches, Sub-Patches -- Deformable Patches -- Multi-Patch Sets -- TPLBP, FPLBP -- Strip and Radial Fan Shapes -- D-NETS Strip Patterns -- Object Polygon Shapes -- Morphological Boundary Shapes -- Texture Structure Shapes -- Super-Pixel Similarity Shapes -- Local Binary Descriptor Point-Pair Patterns -- FREAK Retinal Patterns -- Brisk Patterns -- ORB and BRIEF Patterns -- Descriptor Discrimination -- Spectra Discrimination -- Region, Shapes, and Pattern Discrimination.
Geometric Discrimination Factors -- Feature Visualization to Evaluate Discrimination -- Discrimination via Image Reconstruction from HOG -- Discrimination via Image Reconstruction from Local Binary Patterns -- Discrimination via Image Reconstruction from SIFT Features -- Accuracy, Trackability -- Accuracy Optimizations, Sub-Region Overlap, Gaussian Weighting, and Pooling -- Sub-Pixel Accuracy -- Search Strategies and Optimizations -- Dense Search -- Grid Search -- Multi-Scale Pyramid Search -- Scale Space and Image Pyramids -- Feature Pyramids -- Sparse Predictive Search and Tracking -- Tracking Region-Limited Search -- Segmentation Limited Search -- Depth or Z Limited Search -- Computer Vision, Models, Organization -- Feature Space -- Object Models -- Constraints -- Selection of Detectors and Features -- Manually Designed Feature Detectors -- Statistically Designed Feature Detectors -- Learned Features -- Overview of Training -- Classification of Features and Objects -- Group Distance: Clustering, Training, and Statistical Learning -- Group Distance: Clustering Methods Survey, KNN, RANSAC, K-Means, GMM, SVM, Others -- Classification Frameworks, REIN, MOPED -- Kernel Machines -- Boosting, Weighting -- Selected Examples of Classification -- Feature Learning, Sparse Coding, Convolutional Networks -- Terminology: Codebooks, Visual Vocabulary, Bag of Words, Bag of Features -- Sparse Coding -- Visual Vocabularies -- Learned Detectors via Convolutional Filter Masks -- Convolutional Neural Networks, Neural Networks -- Deep Learning, Pooling, Trainable Feature Hierarchies -- Summary -- Chapter 5: Taxonomy of Feature Description Attributes -- Feature Descriptor Families -- Prior Work on Computer Vision Taxonomies -- Robustness and Accuracy -- General Robustness Taxonomy -- Illumination -- Color Criteria -- Incompleteness -- Resolution and Accuracy.
Geometric Distortion.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
    Ortalama derecelendirme: 0.0 (0 oy)
Bu kayda ilişkin materyal yok

Intro -- Contents at a Glance -- Contents -- About the Author -- Acknowledgments -- Introduction -- Chapter 1: Image Capture and Representation -- Image Sensor Technology -- Sensor Materials -- Sensor Photo-Diode Cells -- Sensor Configurations: Mosaic, Foveon, BSI -- Dynamic Range and Noise -- Sensor Processing -- De-Mosaicking -- Dead Pixel Correction -- Color and Lighting Corrections -- Geometric Corrections -- Cameras and Computational Imaging -- Overview of Computational Imaging -- Single-Pixel Computational Cameras -- 2D Computational Cameras -- 3D Depth Camera Systems -- Binocular Stereo -- Structured and Coded Light -- Optical Coding: Diffraction Gratings -- Time-of-Flight Sensors -- Array Cameras -- Radial Cameras -- Plenoptics: Light Field Cameras -- 3D Depth Processing -- Overview of Methods -- Problems in Depth Sensing and Processing -- The Geometric Field and Distortions -- The Horopter Region, Panum's Area, and Depth Fusion -- Cartesian vs. Polar Coordinates: Spherical Projective Geometry -- Depth Granularity -- Correspondence -- Holes and Occlusion -- Surface Reconstruction and Fusion -- Noise -- Monocular Depth Processing -- Multi-View Stereo -- Sparse Methods: PTAM -- Dense Methods: DTAM -- Optical Flow, SLAM, and SFM -- 3D Representations: Voxels, Depth Maps, Meshes, and Point Clouds -- Summary -- Chapter 2: Image Pre-Processing -- Perspectives on Image Processing -- Problems to Solve During Image Pre-Processing -- Vision Pipelines and Image Pre-Processing -- Corrections -- Enhancements -- Preparing Images for Feature Extraction -- Local Binary Family Pre-Processing -- Spectra Family Pre-Processing -- Basis Space Family Pre-Processing -- Polygon Shape Family Pre-Processing -- The Taxonomy of Image Processing Methods -- Point -- Line -- Area -- Algorithmic -- Data Conversions -- Colorimetry -- Overview of Color Management Systems.

Illuminants, White Point, Black Point, and Neutral Axis -- Device Color Models -- Color Spaces and Color Perception -- Gamut Mapping and Rendering Intent -- Practical Considerations for Color Enhancements -- Color Accuracy and Precision -- Spatial Filtering -- Convolutional Filtering and Detection -- Kernel Filtering and Shape Selection -- Shape Selection or Forming Kernels -- Point Filtering -- Noise and Artifact Filtering -- Integral Images and Box Filters -- Edge Detectors -- Kernel Sets: Sobel, Scharr, Prewitt, Roberts, Kirsch, Robinson, and Frei-Chen -- Canny Detector -- Transform Filtering, Fourier, and Others -- Fourier Transform Family -- Fundamentals -- Fourier Family of Transforms -- Other Transforms -- Morphology and Segmentation -- Binary Morphology -- Gray Scale and Color Morphology -- Morphology Optimizations and Refinements -- Euclidean Distance Maps -- Super-Pixel Segmentation -- Graph-based Super-Pixel Methods -- Gradient-Ascent-Based Super-Pixel Methods -- Depth Segmentation -- Color Segmentation -- Thresholding -- Global Thresholding -- Histogram Peaks and Valleys, and Hysteresis Thresholds -- LUT Transforms, Contrast Remapping -- Histogram Equalization and Specification -- Global Auto Thresholding -- Local Thresholding -- Local Histogram Equalization -- Integral Image Contrast Filters -- Local Auto Threshold Methods -- Chapter 3: Global and Regional Features -- Historical Survey of Features -- Key Ideas: Global, Regional, and Local -- 1960s, 1970s, 1980s-Whole-Object Approaches -- Early 1990s-Partial-Object Approaches -- Mid-1990s-Local Feature Approaches -- Late 1990s-Classified Invariant Local Feature Approaches -- Early 2000s-Scene and Object Modeling Approaches -- Mid-2000s-Finer-Grain Feature and Metric Composition Approaches -- Post-2010-Multi-Modal Feature Metrics Fusion -- Textural Analysis.

1950s thru 1970s-Global Uniform Texture Metrics -- 1980s-Structural and Model-Based Approaches for Texture Classification -- 1990s-Optimizations and Refinements to Texture Metrics -- 2000 toToday-More Robust Invariant Texture Metrics and 3D Texture -- Statistical Methods -- Texture Region Metrics -- Edge Metrics -- Edge Density -- Edge Contrast -- Edge Entropy -- Edge Directivity -- Edge Linearity -- Edge Periodicity -- Edge Size -- Edge Primitive Length Total -- Cross-Correlation and Auto-Correlation -- Fourier Spectrum, Wavelets, and Basis Signatures -- Co-Occurrence Matrix, Haralick Features -- Extended SDM Metrics -- Metric 1: Centroid -- Metric 2: Total Coverage -- Metric 3: Low-Frequency Coverage -- Metric 4: Corrected Coverage -- Metric 5: Total Power -- Metric 6: Relative Power -- Metric 7: Locus Mean Density -- Metric 8: Locus Length -- Metric 9: Bin Mean Density -- Metric 10: Containment -- Metric 11. Linearity -- Metric 12: Linearity Strength -- Laws Texture Metrics -- LBP Local Binary Patterns -- Dynamic Textures -- Statistical Region Metrics -- Image Moment Features -- Point Metric Features -- Global Histograms -- Local Region Histograms -- Scatter Diagrams, 3D Histograms -- Multi-Resolution, Multi-Scale Histograms -- Radial Histograms -- Contour or Edge Histograms -- Basis Space Metrics -- Fourier Description -- Walsh-Hadamard Transform -- HAAR Transform -- Slant Transform -- Zernike Polynomials -- Steerable Filters -- Karhunen-Loeve Transform and Hotelling Transform -- Wavelet Transform and Gabor Filters -- Gabor Functions -- Hough Transform and Radon Transform -- Summary -- Chapter 4: Local Feature Design Concepts, Classification, and Learning -- Local Features -- Detectors, Interest Points, Keypoints, Anchor Points, Landmarks -- Descriptors, Feature Description, Feature Extraction -- Sparse Local Pattern Methods.

Local Feature Attributes -- Choosing Feature Descriptors and Interest Points -- Feature Descriptors and Feature Matching -- Criteria for Goodness -- Repeatability, Easy vs. Hard to Find -- Distinctive vs. Indistinctive -- Relative and Absolute Position -- Matching Cost and Correspondence -- Distance Functions -- Early Work on Distance Functions -- Euclidean or Cartesian Distance Metrics -- Euclidean Distance -- Squared Euclidean Distance -- Cosine Distance or Similarity -- Sum of Absolute Differences (SAD) or L1 Norm -- Sum of Squared Differences (SSD) or L2 Norm -- Correlation Distance -- Hellinger Distance -- Grid Distance Metrics -- Manhattan Distance -- Chebyshev Distance -- Statistical Difference Metrics -- Earth Movers Distance (EMD) or Wasserstein Metric -- Mahalanobis Distance -- Bray Curtis Distance -- Canberra Distance -- Binary or Boolean Distance Metrics -- L0 Norm -- Hamming Distance -- Jaccard Similarity and Dissimilarity -- Descriptor Representation -- Coordinate Spaces, Complex Spaces -- Cartesian Coordinates -- Polar and Log Polar Coordinates -- Radial Coordinates -- Spherical Coordinates -- Gauge Coordinates -- Multivariate Spaces, Multimodal Data -- Feature Pyramids -- Descriptor Density -- Interest Point and Descriptor Culling -- Dense vs. Sparse Feature Description -- Descriptor Shape Topologies -- Correlation Templates -- Patches and Shape -- Single Patches, Sub-Patches -- Deformable Patches -- Multi-Patch Sets -- TPLBP, FPLBP -- Strip and Radial Fan Shapes -- D-NETS Strip Patterns -- Object Polygon Shapes -- Morphological Boundary Shapes -- Texture Structure Shapes -- Super-Pixel Similarity Shapes -- Local Binary Descriptor Point-Pair Patterns -- FREAK Retinal Patterns -- Brisk Patterns -- ORB and BRIEF Patterns -- Descriptor Discrimination -- Spectra Discrimination -- Region, Shapes, and Pattern Discrimination.

Geometric Discrimination Factors -- Feature Visualization to Evaluate Discrimination -- Discrimination via Image Reconstruction from HOG -- Discrimination via Image Reconstruction from Local Binary Patterns -- Discrimination via Image Reconstruction from SIFT Features -- Accuracy, Trackability -- Accuracy Optimizations, Sub-Region Overlap, Gaussian Weighting, and Pooling -- Sub-Pixel Accuracy -- Search Strategies and Optimizations -- Dense Search -- Grid Search -- Multi-Scale Pyramid Search -- Scale Space and Image Pyramids -- Feature Pyramids -- Sparse Predictive Search and Tracking -- Tracking Region-Limited Search -- Segmentation Limited Search -- Depth or Z Limited Search -- Computer Vision, Models, Organization -- Feature Space -- Object Models -- Constraints -- Selection of Detectors and Features -- Manually Designed Feature Detectors -- Statistically Designed Feature Detectors -- Learned Features -- Overview of Training -- Classification of Features and Objects -- Group Distance: Clustering, Training, and Statistical Learning -- Group Distance: Clustering Methods Survey, KNN, RANSAC, K-Means, GMM, SVM, Others -- Classification Frameworks, REIN, MOPED -- Kernel Machines -- Boosting, Weighting -- Selected Examples of Classification -- Feature Learning, Sparse Coding, Convolutional Networks -- Terminology: Codebooks, Visual Vocabulary, Bag of Words, Bag of Features -- Sparse Coding -- Visual Vocabularies -- Learned Detectors via Convolutional Filter Masks -- Convolutional Neural Networks, Neural Networks -- Deep Learning, Pooling, Trainable Feature Hierarchies -- Summary -- Chapter 5: Taxonomy of Feature Description Attributes -- Feature Descriptor Families -- Prior Work on Computer Vision Taxonomies -- Robustness and Accuracy -- General Robustness Taxonomy -- Illumination -- Color Criteria -- Incompleteness -- Resolution and Accuracy.

Geometric Distortion.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

yorum yazmak için.

Ziyaretçi Sayısı

Destekleyen Koha