Bird Species : How They Arise, Modify and Vanish.

Yazar:Tietze, Dieter Thomas
Materyal türü: KonuKonuSeri kaydı: Yayıncı: Cham : Springer International Publishing AG, 2018Telif hakkı tarihi: �2018Tanım: 1 online resource (270 pages)İçerik türü:text Ortam türü:computer Taşıyıcı türü: online resourceISBN: 9783319916897Tür/Form:Electronic books.Ek fiziksel biçimler:Print version:: Bird SpeciesLOC classification: QL1-991Çevrimiçi kaynaklar: Click to View
İçindekiler:
Intro -- Foreword -- References -- Contents -- Chapter 1: Introduction: Studying Birds in Time and Space -- 1.1 Why and How to Study Bird Species -- 1.2 Physical and Behavioral Aspects of Birds -- 1.3 The Spatial Component -- 1.4 Ecology Matters: Bird Species in the Anthropocene -- References -- Chapter 2: Integrative Taxonomy of Birds: The Nature and Delimitation of Species -- 2.1 The Centrality of Species -- 2.2 Why Is There a Species Problem? -- 2.2.1 Monism vs. Pluralism -- 2.2.2 Realism vs. Anti-realism -- 2.2.3 Theoretical vs. Operational -- 2.2.4 Pattern vs. Process -- 2.2.5 Prospective vs. Historical -- 2.2.6 Concerns by End Users -- 2.3 The Lineage Concept -- 2.4 Corollaries of the Lineage Concept -- 2.5 Integrative Taxonomy -- 2.5.1 Why Multiple Data? -- 2.5.2 Why Integrate? -- 2.6 Strengths of Integrative Taxonomy -- 2.7 What Is Not Integrative Taxonomy? -- 2.7.1 Falsification by a ``Defining�� Species Criterion -- 2.7.2 Standardization of Species Criteria -- 2.8 The Dynamics of Taxonomic Change -- 2.9 The Drivers of Taxonomic Change -- 2.10 Benefits of Integrative Taxonomy to Other Fields -- 2.10.1 Speciation Studies -- 2.10.2 Biogeography -- 2.10.3 Conservation -- 2.11 Remaining Issues -- References -- Suggestion for Further Reading -- Chapter 3: Studying Speciation: Genomic Essentials and Approaches -- 3.1 What Is an Avian Genome? -- 3.1.1 Structure of the Genetic Material -- 3.1.1.1 Noncoding and Coding Regions -- 3.1.1.2 Autosomes Versus Sex Chromosomes -- 3.1.1.3 Nuclear Genome and Mitochondrial Genome -- 3.1.2 The Chicken Model: History and Overview -- 3.2 How Does the Genome ``Work��? -- 3.2.1 Replication of the DNA -- 3.2.2 Transcription: RNA Synthesis -- 3.2.3 Translation -- 3.2.4 One Gene: One Function? -- 3.2.5 Categorical vs. Quantitative Traits -- 3.2.6 Phenotypic Plasticity -- 3.3 How Does the Genome Evolve?.
3.3.1 Modification of the DNA -- 3.3.2 Mutation -- 3.3.3 Selection -- 3.3.4 Genetic Drift -- 3.3.5 Geographic Variation and Dispersal -- 3.3.6 Recombination and Migration -- 3.3.7 Gene Duplication -- 3.4 How to Study Speciation Using Genomic Features? -- 3.4.1 PCR-Based Molecular Markers -- 3.4.1.1 Ribosomal Genes -- 3.4.1.2 Mitochondrial DNA Markers -- 3.4.1.3 Microsatellites -- 3.4.2 Expressed Sequence Tags -- 3.4.3 Single Nucleotide Polymorphisms -- 3.4.4 Restriction-site-associated DNA sequencing -- 3.4.5 Genotyping by sequencing -- 3.4.6 Transcriptomics -- 3.4.7 ``Whole�� Genome Sequencing -- 3.4.7.1 Different Strategies for Sequencing Genomes -- 3.4.7.2 Limitations of Analyzing Genomes -- 3.4.8 Epigenome -- 3.5 Closing Words -- References -- Chapter 4: Morphological Variation in Birds: Plasticity, Adaptation, and Speciation -- 4.1 General Aspects of Phenotypic Variation in Birds -- 4.2 The Historical Role of Morphological Criteria for Species Delimitation -- 4.3 Phenotypic Variation and Plasticity of Characters -- 4.4 Assessing Morphological Variation -- 4.5 Disentangling Phylogenetic and Adaptive Constraints -- 4.6 A Contemporary Perspective on Morphological Variation -- References -- Chapter 5: Song: The Learned Language of Three Major Bird Clades -- 5.1 Eager Birds: The Advanced Learners -- 5.2 Passerine Song -- 5.3 The Best Singer Takes It All: Female Preference and Sexual Selection -- 5.4 How It All Began: A Brief History of Bioacoustic Studies -- 5.5 Telltale Songs: Evolution and Phylogenetic Information of Vocalizations -- 5.6 Vocal Learning as a Pacemaker of Evolution -- 5.7 Dialects: Spatial Variation -- 5.8 Competition for Acoustic Space: The Role of Ecology -- 5.9 Dialects as a Language Barrier and Isolating Mechanism -- 5.10 Sympathy in Sympatry: Bilingual Birds in a Hybrid Zone -- References.
Chapter 6: Timing Matters: Allochronic Contributions to Population Divergence -- 6.1 Timing Is Everything! -- 6.2 Clockworks -- 6.3 Allochrony: Differences in Timing Between Individuals, Populations, and Species -- 6.4 Isolation by the Clock -- 6.5 Conclusions -- Further Reading -- References -- Chapter 7: (Micro)evolutionary Changes and the Evolutionary Potential of Bird Migration -- 7.1 History and Geographic Origins -- 7.2 Regulation -- 7.2.1 Variation in Migratory Strategy -- 7.2.2 Migratory Traits Are Inherited -- 7.2.3 Underlying Genetic Architecture: Simple and Common? -- 7.2.4 Marker-Based Approaches: Candidate Genes for Migration -- 7.2.5 Enhancing Scale and Resolution: Genome-Wide Approaches -- 7.3 Population Differentiation and Speciation -- References -- Chapter 8: Avian Diversity and Distributions and Their Evolution Through Space and Time -- 8.1 Spatiotemporal Diversification of Modern Birds -- 8.2 Global Distribution and Diversity Patterns -- 8.3 Geography of Speciation -- 8.4 Vicariance vs. Dispersal and the Dynamics of Range Evolution in Birds -- References -- Chapter 9: Modeling Avian Distributions and Niches: Insights into Invasions and Speciation in Birds -- 9.1 Introduction -- 9.2 The Conceptual Background of SDMs or What Is a Niche? -- 9.3 How to Build a Species Distribution Model? -- 9.3.1 Occurrence Data -- 9.3.2 Predictor Variables -- 9.3.3 Algorithms -- 9.3.4 Niche Comparisons -- 9.4 Niche Conservatism -- 9.5 Evaluating Avian Invasions -- 9.6 Speciation and Niche Evolution -- 9.7 Assisting Taxonomy -- References -- Chapter 10: Phylogeography and the Role of Hybridization in Speciation -- 10.1 Introduction -- 10.2 Some General Observations from Avian Phylogeography: Historical Population Size Changes and Introgression -- 10.3 Phylogeography, Sex Chromosomes, and Speciation.
10.4 Bird Species with No Known or Very Few Genetic Differences -- 10.5 Hybrid Zones: A Closer Look -- 10.5.1 Suture Zones and Multiple Hybrid Zones -- 10.5.2 Detail Emerging from Single Species and Hybrid Zones: Three Case Studies -- 10.6 Mitonuclear Incompatibility, Hybridization, and Speciation -- 10.7 Ring Species as a Special Case of Divergence with Gene Flow: Are There Any Surviving Examples? -- 10.8 Hybrid Species -- 10.8.1 Hybrid Zones Sometimes Move -- 10.9 A View to the Future -- References -- Chapter 11: Ecological Speciation: When and How Variation Among Environments Can Drive Population Divergence -- 11.1 Approaches Toward the Study of Speciation -- 11.2 Four Ways to Increase Ecological Performance: Which May Each Drive Speciation -- 11.3 Ecological Speciation Driven by Natural Selection -- 11.4 Ecological Speciation Driven by Phenotypic Plasticity -- 11.5 Ecological Speciation Driven by Adjustment of the Environment -- 11.6 Ecological Speciation Driven by Selection of the Environment -- 11.7 Feedbacks Between Plasticity, Adjusting the Environment, Selection of the Environment, and Natural Selection -- References -- Chapter 12: Climate Change Impacts on Bird Species -- 12.1 Introduction -- 12.2 Birds and Climate Change: Is There an Impact? -- 12.2.1 Climate Change Indicators -- 12.3 What Are the Consequences of Climate Change for Birds? -- 12.4 Projections of Potential Climate Change Impacts: What Else Is Waiting for Us? -- 12.5 Do Niches and Interactions with Abiotic and Biotic Environment ``Evolve��? -- 12.6 Conservation Implications -- References -- Chapter 13: Impact of Urbanization on Birds -- 13.1 A Brief History of Urbanization -- 13.2 Birds and the City -- 13.2.1 Species Vanish from the City -- 13.2.2 Species Flourish or Persist in the City -- 13.2.3 Species Change -- 13.3 Urban Environment as a Barrier for Movement.
13.4 The Urban Drivers -- 13.5 Phenotypic Changes and Responses as a Result of Urban Life -- 13.5.1 Physiology -- 13.5.1.1 Stress Physiology and Its Implications -- 13.5.1.2 Nutritional Physiology and Its Implications -- 13.5.2 Behavior -- 13.5.2.1 Behavioral Responses to Chemical Pollution -- 13.5.2.2 Behavioral Responses to Noise -- 13.5.2.3 Behavioral Responses to ALAN -- 13.6 Concluding Remarks -- References -- Glossary.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
    Ortalama derecelendirme: 0.0 (0 oy)
Bu kayda ilişkin materyal yok

Intro -- Foreword -- References -- Contents -- Chapter 1: Introduction: Studying Birds in Time and Space -- 1.1 Why and How to Study Bird Species -- 1.2 Physical and Behavioral Aspects of Birds -- 1.3 The Spatial Component -- 1.4 Ecology Matters: Bird Species in the Anthropocene -- References -- Chapter 2: Integrative Taxonomy of Birds: The Nature and Delimitation of Species -- 2.1 The Centrality of Species -- 2.2 Why Is There a Species Problem? -- 2.2.1 Monism vs. Pluralism -- 2.2.2 Realism vs. Anti-realism -- 2.2.3 Theoretical vs. Operational -- 2.2.4 Pattern vs. Process -- 2.2.5 Prospective vs. Historical -- 2.2.6 Concerns by End Users -- 2.3 The Lineage Concept -- 2.4 Corollaries of the Lineage Concept -- 2.5 Integrative Taxonomy -- 2.5.1 Why Multiple Data? -- 2.5.2 Why Integrate? -- 2.6 Strengths of Integrative Taxonomy -- 2.7 What Is Not Integrative Taxonomy? -- 2.7.1 Falsification by a ``Defining�� Species Criterion -- 2.7.2 Standardization of Species Criteria -- 2.8 The Dynamics of Taxonomic Change -- 2.9 The Drivers of Taxonomic Change -- 2.10 Benefits of Integrative Taxonomy to Other Fields -- 2.10.1 Speciation Studies -- 2.10.2 Biogeography -- 2.10.3 Conservation -- 2.11 Remaining Issues -- References -- Suggestion for Further Reading -- Chapter 3: Studying Speciation: Genomic Essentials and Approaches -- 3.1 What Is an Avian Genome? -- 3.1.1 Structure of the Genetic Material -- 3.1.1.1 Noncoding and Coding Regions -- 3.1.1.2 Autosomes Versus Sex Chromosomes -- 3.1.1.3 Nuclear Genome and Mitochondrial Genome -- 3.1.2 The Chicken Model: History and Overview -- 3.2 How Does the Genome ``Work��? -- 3.2.1 Replication of the DNA -- 3.2.2 Transcription: RNA Synthesis -- 3.2.3 Translation -- 3.2.4 One Gene: One Function? -- 3.2.5 Categorical vs. Quantitative Traits -- 3.2.6 Phenotypic Plasticity -- 3.3 How Does the Genome Evolve?.

3.3.1 Modification of the DNA -- 3.3.2 Mutation -- 3.3.3 Selection -- 3.3.4 Genetic Drift -- 3.3.5 Geographic Variation and Dispersal -- 3.3.6 Recombination and Migration -- 3.3.7 Gene Duplication -- 3.4 How to Study Speciation Using Genomic Features? -- 3.4.1 PCR-Based Molecular Markers -- 3.4.1.1 Ribosomal Genes -- 3.4.1.2 Mitochondrial DNA Markers -- 3.4.1.3 Microsatellites -- 3.4.2 Expressed Sequence Tags -- 3.4.3 Single Nucleotide Polymorphisms -- 3.4.4 Restriction-site-associated DNA sequencing -- 3.4.5 Genotyping by sequencing -- 3.4.6 Transcriptomics -- 3.4.7 ``Whole�� Genome Sequencing -- 3.4.7.1 Different Strategies for Sequencing Genomes -- 3.4.7.2 Limitations of Analyzing Genomes -- 3.4.8 Epigenome -- 3.5 Closing Words -- References -- Chapter 4: Morphological Variation in Birds: Plasticity, Adaptation, and Speciation -- 4.1 General Aspects of Phenotypic Variation in Birds -- 4.2 The Historical Role of Morphological Criteria for Species Delimitation -- 4.3 Phenotypic Variation and Plasticity of Characters -- 4.4 Assessing Morphological Variation -- 4.5 Disentangling Phylogenetic and Adaptive Constraints -- 4.6 A Contemporary Perspective on Morphological Variation -- References -- Chapter 5: Song: The Learned Language of Three Major Bird Clades -- 5.1 Eager Birds: The Advanced Learners -- 5.2 Passerine Song -- 5.3 The Best Singer Takes It All: Female Preference and Sexual Selection -- 5.4 How It All Began: A Brief History of Bioacoustic Studies -- 5.5 Telltale Songs: Evolution and Phylogenetic Information of Vocalizations -- 5.6 Vocal Learning as a Pacemaker of Evolution -- 5.7 Dialects: Spatial Variation -- 5.8 Competition for Acoustic Space: The Role of Ecology -- 5.9 Dialects as a Language Barrier and Isolating Mechanism -- 5.10 Sympathy in Sympatry: Bilingual Birds in a Hybrid Zone -- References.

Chapter 6: Timing Matters: Allochronic Contributions to Population Divergence -- 6.1 Timing Is Everything! -- 6.2 Clockworks -- 6.3 Allochrony: Differences in Timing Between Individuals, Populations, and Species -- 6.4 Isolation by the Clock -- 6.5 Conclusions -- Further Reading -- References -- Chapter 7: (Micro)evolutionary Changes and the Evolutionary Potential of Bird Migration -- 7.1 History and Geographic Origins -- 7.2 Regulation -- 7.2.1 Variation in Migratory Strategy -- 7.2.2 Migratory Traits Are Inherited -- 7.2.3 Underlying Genetic Architecture: Simple and Common? -- 7.2.4 Marker-Based Approaches: Candidate Genes for Migration -- 7.2.5 Enhancing Scale and Resolution: Genome-Wide Approaches -- 7.3 Population Differentiation and Speciation -- References -- Chapter 8: Avian Diversity and Distributions and Their Evolution Through Space and Time -- 8.1 Spatiotemporal Diversification of Modern Birds -- 8.2 Global Distribution and Diversity Patterns -- 8.3 Geography of Speciation -- 8.4 Vicariance vs. Dispersal and the Dynamics of Range Evolution in Birds -- References -- Chapter 9: Modeling Avian Distributions and Niches: Insights into Invasions and Speciation in Birds -- 9.1 Introduction -- 9.2 The Conceptual Background of SDMs or What Is a Niche? -- 9.3 How to Build a Species Distribution Model? -- 9.3.1 Occurrence Data -- 9.3.2 Predictor Variables -- 9.3.3 Algorithms -- 9.3.4 Niche Comparisons -- 9.4 Niche Conservatism -- 9.5 Evaluating Avian Invasions -- 9.6 Speciation and Niche Evolution -- 9.7 Assisting Taxonomy -- References -- Chapter 10: Phylogeography and the Role of Hybridization in Speciation -- 10.1 Introduction -- 10.2 Some General Observations from Avian Phylogeography: Historical Population Size Changes and Introgression -- 10.3 Phylogeography, Sex Chromosomes, and Speciation.

10.4 Bird Species with No Known or Very Few Genetic Differences -- 10.5 Hybrid Zones: A Closer Look -- 10.5.1 Suture Zones and Multiple Hybrid Zones -- 10.5.2 Detail Emerging from Single Species and Hybrid Zones: Three Case Studies -- 10.6 Mitonuclear Incompatibility, Hybridization, and Speciation -- 10.7 Ring Species as a Special Case of Divergence with Gene Flow: Are There Any Surviving Examples? -- 10.8 Hybrid Species -- 10.8.1 Hybrid Zones Sometimes Move -- 10.9 A View to the Future -- References -- Chapter 11: Ecological Speciation: When and How Variation Among Environments Can Drive Population Divergence -- 11.1 Approaches Toward the Study of Speciation -- 11.2 Four Ways to Increase Ecological Performance: Which May Each Drive Speciation -- 11.3 Ecological Speciation Driven by Natural Selection -- 11.4 Ecological Speciation Driven by Phenotypic Plasticity -- 11.5 Ecological Speciation Driven by Adjustment of the Environment -- 11.6 Ecological Speciation Driven by Selection of the Environment -- 11.7 Feedbacks Between Plasticity, Adjusting the Environment, Selection of the Environment, and Natural Selection -- References -- Chapter 12: Climate Change Impacts on Bird Species -- 12.1 Introduction -- 12.2 Birds and Climate Change: Is There an Impact? -- 12.2.1 Climate Change Indicators -- 12.3 What Are the Consequences of Climate Change for Birds? -- 12.4 Projections of Potential Climate Change Impacts: What Else Is Waiting for Us? -- 12.5 Do Niches and Interactions with Abiotic and Biotic Environment ``Evolve��? -- 12.6 Conservation Implications -- References -- Chapter 13: Impact of Urbanization on Birds -- 13.1 A Brief History of Urbanization -- 13.2 Birds and the City -- 13.2.1 Species Vanish from the City -- 13.2.2 Species Flourish or Persist in the City -- 13.2.3 Species Change -- 13.3 Urban Environment as a Barrier for Movement.

13.4 The Urban Drivers -- 13.5 Phenotypic Changes and Responses as a Result of Urban Life -- 13.5.1 Physiology -- 13.5.1.1 Stress Physiology and Its Implications -- 13.5.1.2 Nutritional Physiology and Its Implications -- 13.5.2 Behavior -- 13.5.2.1 Behavioral Responses to Chemical Pollution -- 13.5.2.2 Behavioral Responses to Noise -- 13.5.2.3 Behavioral Responses to ALAN -- 13.6 Concluding Remarks -- References -- Glossary.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

yorum yazmak için.

Ziyaretçi Sayısı

Destekleyen Koha