High Luminosity Large Hadron Collider, The.
- 1 online resource (406 pages)
- Advanced Series On Directions In High Energy Physics ; v.24 .
Intro -- Contents -- Foreword -- Preface -- List of Authors -- Chapter 1 Introduction to the HL-LHC Project -- 1. Context and Objectives -- 2. Approach for the Upgrade -- 2.1. Present luminosity limitations and hardware constraints -- 2.2. Upgraded systems for the high luminosity -- 2.2.1. Luminosity leveling and availability -- 2.2.2. Upgrade parameters -- 2.3. Project: performance, plan and cost -- 2.4. The international collaboration -- References -- Chapter 2 The Physics Landscape of the High Luminosity LHC -- 1. Introduction -- 1.1. Status and prospects of Higgs studies -- 1.2. Status and prospects of BSM searches -- 1.3. Additional remarks -- References -- Chapter 3 The HL-LHC Machine -- 1. HL-LHC Baseline Parameters -- 2. Alternative Options -- 3. HL-LHC the Geographical Distribution of the Upgrade Interventions -- 3.1. Point 4 -- 3.2. Point 7 -- 3.2.1. The horizontal superconducting links -- 3.2.2. New collimators in the dispersion suppressor -- 3.3. Point 2 -- 3.4. Point 6 -- 3.5. Point 1 and Point 5 -- 3.5.1. LHC machine tunnel -- 3.5.2. Existing LHC tunnel service areas -- 3.5.3. New HL-LHC tunnel service areas -- 3.5.4. New connection from the LHC tunnel and HL-LHC service areas to the surface -- 3.5.5. New surface installation -- 4. Schedule -- References -- Chapter 4 The HL-LHC Accelerator Physics Challenges -- 1. Introduction and General Description -- 1.1. Optics -- 1.1.1. Optics constraints and challenges -- 1.1.2. The Achromatic Telescopic Squeezing (ATS) scheme as baseline for the HL-LHC optics -- 1.1.3. Crossing angle and crab cavities -- 1.1.4. Layout and mechanical aperture -- 1.1.5. Dynamic aperture -- 1.2. Collective effects -- 1.2.1. Present LHC Impedance -- 1.2.2. HL-LHC impedance -- 1.2.3. Landau damping -- 1.2.4. Synchrotron radiation and electron cloud -- 1.2.5. Intra-beam scattering -- 1.2.6. Touschek scattering. 1.2.7. Beam-beam effects -- 1.3. Dealing with pile up limits -- 1.3.1. Detector limitations -- 1.3.2. Luminosity leveling -- 1.4. Summary and conclusions -- Acknowledgments -- References -- Chapter 5 Interface with Experimental Detector in the High Luminosity Run -- 1. Introduction -- 2. Overview of the Main Changes Relevant for the Experiments -- 3. Experimental Beam-pipes -- 4. TAS, TAN -- 5. Failure Scenarios and Experiments Protection -- 6. Machine Induced Backgrounds -- References -- Chapter 6 Superconducting Magnet Technology for the Upgrade -- 1. Targets -- 2. Constraints -- 2.1. Radiation damage and heat load -- 2.2. Field quality -- 2.3. Fringe field and magnet size -- 3. Main Design Choices -- 3.1. Foreword: Loadline, critical surface and margin -- 3.2. Technology, operational temperature, margin -- 3.3. Coil width and stress -- 3.4. Cryostats and interconnections -- 3.5. Cooling -- 4. The Triplet Quadrupoles Q1-Q3 -- 4.1. Historical development -- 4.2. Strand and cable -- 4.3. Coil -- 4.4. Mechanical structure -- 4.5. Protection -- 4.6. Field quality and shimming -- 5. Correctors -- 5.1. Orbit correctors -- 5.2. Linear and nonlinear correctors -- 6. The Separation Dipole D1 -- 7. The Recombination Dipole D2 -- 8. The Large Aperture Two-in-One Quadrupole -- References -- Chapter 7 Crab Cavity Development -- 1. Crab Cavities -- 2. Global and Local Schemes -- 3. Technology Choice and Spatial Constraints -- 4. Compact Cavity Design Options -- 5. Present Status of Prototype Cavities -- 6. RF Multipoles, Coupler Kicks and Limits -- 7. Frequency Tuning System -- 8. RF System and Controls -- 8.1. Beam loading and RF power requirement -- 8.2. Power amplifier and input coupler -- 8.3. RF controls and machine protection -- 8.4. RF noise and stability -- 8.5. Impedance budget and higher order mode damping -- 8.6. Cavity transparency and operation. 9. Integration into SPS and LHC -- 9.1. SPS-BA4 test setup -- 9.2. LHC integration constraints -- 9.3. Positioning and alignment -- References -- Chapter 8 Powering the Hi-Luminosity Triplets -- 1. Introduction -- 2. Powering the High-Luminosity Triplets -- 3. Cold Powering System -- 4. Conclusions -- References -- Chapter 9 Cryogenics for HL-LHC -- 1. Introduction -- 2. LHC Machine Upgrades -- 2.1. Upgraded beam parameters and constraints -- 3. Temperature Level and Heat Loads -- 4. Impact on Existing Sector Cryogenic Plants -- 5. New Cryogenics for P4 Insertion -- 6. New Cryogenics for High-Luminosity Insertions at P1 and P5 -- 7. Building and General Service Requirement -- 8. Conclusion -- References -- Chapter 10 The "Environmental" Challenges: Impact of Radiation on Machine Components -- 1. Collision Debris -- 2. Beamline Model -- 3. Radiation Capture -- 4. Energy Deposition -- 5. Radiation to Electronics -- References -- Chapter 11 Radiation Protection Considerations -- 1. Radiological Quantities -- 2. Regulatory Framework, Design Limits and Dose Objectives -- 2.1. Justification, optimization, limitation -- 2.2. Design constraints -- 2.3. ALARA and dose objectives -- 3. The FLUKA Monte Carlo Code for Radiation Protection Studies -- 4. Benchmark of Radiological Assessments with Measurements -- 5. Estimation of Residual Dose Rates Around ATLAS Until LS3 -- References -- Chapter 12 Machine Protection with a 700 MJ Beam -- 1. Introduction -- 2. Present Performance of LHC Machine Protection and Future Challenges with HL-LHC Beams -- 2.1. Ultra-fast failures -- 2.2. Fast failures -- 2.3. UFOs -- 2.4. Slow failures -- References -- Chapter 13 Cleaning Insertions and Collimation Challenges -- 1. Present LHC Collimation -- 1.1. Introduction to LHC multi-stage collimation -- 1.2. Brief recapitulation of collimation performance in LHC Run 1. 1.3. Preliminary LHC intensity reach from collimation -- 1.4. Challenges of HL-LHC parameters -- 2. Present and Future Collimator Design Concepts -- 2.1. Collimator design for precision and robustness -- 2.2. Collimator with embedded beam position monitors -- 2.3. Rotatory collimator design -- 2.4. Status of R& -- D on novel advanced collimator materials -- 3. Improved Cleaning of Dispersion Suppressor Losses -- 3.1. Introduction to local DS collimation -- 3.2. DS collimation solutions for proton and ion cases -- 3.3. Status of prototyping and design -- 4. Advanced Collimation Concepts for HL-LHC -- 4.1. Halo diffusion control techniques -- 4.2. Crystal collimation -- 4.3. Improved optics scenarios for the collimation insertions -- References -- Chapter 14 Long-Range Beam-Beam Compensation Using Wires -- 1. Motivation -- 2. Compensation Scheme -- 3. CERN SPS Wire Compensators -- 4. Scaling Laws -- 5. History of SPS BBLR Studies -- 6. Technical Issues -- 7. Single BBLR 'Excitation' Studies -- 8. Studies for Wire Compensators in the LHC -- 9. Simulation Results -- 10. Demonstrator Setup -- 11. Conclusions and Outlook -- Acknowledgments -- References -- Chapter 15 Impedance and Component Heating -- 1. Introduction -- 2. 2010-2012 Experience -- 2.1. Transverse impedance model and beam instability -- 2.2. Beam-induced RF heating -- 3. Expected Situation During the HL-LHC Era -- References -- Chapter 16 Challenges and Plans for the Proton Injectors -- 1. Introduction -- 2. Present LHC Proton Injectors -- 2.1. Description -- 2.2. Present performance and future needs -- 3. Upgrade Plan of the LHC Proton Injector Complex -- 3.1. Transverse phase planes -- 3.2. Longitudinal phase plane -- 3.3. Electron clouds -- 3.4. Other upgrades -- 4. Estimated Performance of the Upgraded LHC Proton Injector Complex -- References. Chapter 17 New Injectors: The Linac4 Project and the New H- Source -- 1. Introduction -- 2. Parameters, General Design and Layout -- 3. Challenges of the Ion Source -- 4. Challenges of the 3 MeV Injector -- 5. Challenges of the Accelerating Structures -- 6. Infrastructure and Operational Challenges -- References -- Chapter 18 Challenges and Plans for the Ion Injectors -- 1. Introduction -- 2. The Current Scheme -- 2.1. The ion accelerator chain -- 2.2. Production of the bunch trains for the LHC -- 3. Planned Upgrades -- 3.1. Doubling the repetition rate of Linac3 -- 3.2. Overcoming the intensity limitation in LEIR -- 3.3. Bunch splitting in the PS -- 3.4. New injection scheme into the SPS -- 3.5. Momentum slip-stacking in the SPS -- 4. The Upgraded Filling Scheme -- References -- Chapter 19 Challenges and Plans for Injection and Beam Dump -- 1. Introduction -- 2. Protection Against Injection Errors -- 3. Injection Kicker MKI Performances -- 3.1. Beam induced heating of ferrite yoke -- 3.2. Cooling of ferrite yoke -- 3.3. Ferrite toroid heating -- 3.4. Surface flashover of ceramic tube -- 3.5. Electron cloud -- 3.6. Fast transient beamlosses (UFOs) -- 3.7. Possible future upgrades and ongoing R& -- D -- 4. Beam Loss Control at Injection -- 5. Beam Dump System Performance Reach -- 6. Protection Against Beam Dumping Errors -- 7. Beam Dump Kicker Performance Upgrades -- Acknowledgments -- References -- Chapter 20 Beam Instrumentation and Diagnostics for the LHC Upgrade -- 1. Introduction -- 2. Beam Loss Measurement for HL-LHC -- 2.1. Beam loss monitors for the HL-LHC triplet magnets -- 2.2. A radiation tolerant ASIC for the HL-LHC beam loss monitoring system -- 3. Beam Position Monitoring for the HL-LHC -- 3.1. Current performance and limitations -- 3.2. A high resolution orbit measurement system for HL-LHC. 3.3. High directivity strip-line pick-ups for the HL-LHC insertion regions.