TY - BOOK AU - Maiani,Luciano AU - Rolandi,Luigi TI - Standard Theory Of Particle Physics, The T2 - Advanced Series On Directions In High Energy Physics SN - 9789814733519 PY - 2016/// CY - Singapore PB - World Scientific Publishing Company KW - Electronic books N1 - Intro -- Contents -- Preface -- 1. The Evolution of Quantum Field Theory: From QED to Grand Unification -- 1. The Early Days, Before 1970 -- 2. The New Ideas of the 1970s -- 3. The Strong Interactions -- 4. The First Years of the Standard Model. Quantum Chromodynamics -- 5. The Large N Limit. Planar Diagrams -- 6. Grand Unification -- 7. Magnetic Monopoles, Solitons and Instantons -- 8. Supersymmetry and Gravity -- 9. Calculations -- 10. Conclusions and Outlook -- References -- 2. The Making of the Standard Theory -- 1. Introduction -- 2. Prehistory -- 2.1. The electron spectrum in (Sb(B-decay -- 2.2. Enter the neutrino -- 2.3. Fermi's Tentativo -- 2.4. The high energy behaviour -- 3. Thirty Years of Unconcern, Thirty Years of Doubt -- 3.1. Fermi's theory as the most successful phenomenology -- 3.2. Fermi's theory as the most inspiring model -- 3.3. Fermi's theory as a an effective field theory -- 4. Gauge Theories -- 4.1. Gauge invariance in classical physics -- 4.2. Gauge invariance in quantum mechanics -- 4.3. From general relativity to particle physics -- 4.4. Yang-Mills and weak interactions -- 4.5. A model for leptons -- 5. Fighting the Infinities -- 5.1. The phenomenology front -- 5.2. Early attempts -- 5.3. The leading divergences -- 5.4. The next-to-leading divergences -- 6. The Standard Model -- 6.1. Which model? -- 6.1.1. No neutral currents -- 6.1.2. The U(1) × SU(2) model -- 6.2. A problem of anomalies -- 6.3. The Standard Model becomes the Standard Theory -- 7. Beyond the Standard Model -- 7.1. Why and how -- 7.2. The most beautiful speculations -- 7.2.1. Grand unified theories -- 7.2.2. Supersymmetry -- References -- 3. Quantum Chromodynamics and Deep Inelastic Scattering -- 1. Hard Scattering before QCD -- 2. The Discovery of Asymptotic Freedom -- 3. Deep Inelastic Scattering -- 4. Factorization and the QCD Improved Parton Model; 5. Parton Shower Monte Carlo -- 6. Jet Cross Sections -- 7. Technical Advances -- 7.1. One-loop calculations -- 8. The Age of the Automation -- 8.1. Tree graphs -- 8.2. NLO calculations -- 9. Outlook for NNLO -- 10. Epilogue -- References -- 4. Electroweak Corrections -- 1. Introduction -- 2. The Pioneering Works -- 3. Constraining mt and mH -- 4. Indirect Constraints and Orientation on New Physics -- 4.1. Oblique parameters -- 4.2. Effective parameters at the Z pole -- 4.3. Effective operators -- 4.4. Examples in specific models -- 5. High Precision in the Standard Model -- Acknowledgments -- References -- 5. Lattice Quantum Chromodynamics -- 1. Introduction -- 2. Introduction to Lattice Phenomenology -- 2.1. Uncertainties in lattice simulations -- 2.1.1. Unphysical light-quark masses -- 2.1.2. Lattice spacings and volumes -- 2.2. Renormalisation -- 2.3. Heavy quarks -- 3. Determination of (Sa(Bs and the Quark Masses -- 4. Selected Quantities in Flavour Physics -- 4.1. Leptonic decays of mesons -- 4.2. Neutral-meson mixing and semileptonic decays of pseudoscalar mesons -- 4.3. Hadronic decays -- 4.3.1. Two-body decay amplitudes -- 4.3.2. On the difficulty of studying exclusive nonleptonic B decays -- 5. New Directions -- 5.1. Hadronic effects in the muon's electric dipole moment -- 5.2. Long-distance contributions to hadronic processes -- 5.3. R(D) and R(D∗) -- 6. Summary and Future Prospects -- References -- 6. The Determination of the Strong Coupling Constant -- 1. Introduction -- 2. Theoretical Framework -- 3. Observables -- 4. Brief Historical Overview -- 5. Conclusions -- Acknowledgments -- References -- 7. Hadron Contribution to Vacuum Polarisation -- 1. Introduction and Historical Perspective -- 2. Dispersion Relations -- 3. e+e− Data -- 3.1. Experimental progress toward precision -- 3.2. Progress in combining data -- 4. Use of tau Data; 5. Use of Theory -- 6. Applications -- 6.1. The anomalous magnetic moment of the muon -- 6.2. Running electromagnetic fine structure constant at M2Z -- 7. Perspectives -- References -- 8. The Number of Neutrinos and the Z Line Shape -- 1. Introduction: What is the Number of Families of Fermions? -- 2. Determination of the Number of Light Neutrino Species at LEP and SLC -- 3. Determination of the Z Line Shape Parameters -- 4. Precision Measurements of the Mass and Width of the Z -- 5. The Discovery of the Top Quark, the Higgs Boson Mass -- 6. Discussion and Outlook -- References -- 9. Asymmetries at the Z pole: The Quark and Lepton Quantum Numbers -- 1. Introduction -- 2. Asymmetries and Polarisations at the Z pole -- 3. Forward-Backward Asymmetries -- 3.1. Lepton forward-backward asymmetries -- 3.2. Heavy quark asymmetries -- 3.2.1. Lepton tagging -- 3.2.2. Inclusive measurements -- 3.2.3. Heavy quark asymmetries: Combined results and QCD corrections -- 4. Asymmetries with Polarised Beams -- 4.1. Measurement of the left-right asymmetry (ALR) -- 4.2. Heavy quark asymmetries with polarised beams -- 5. Measurement of the tau Polarisation in Z Decays -- 6. Interpretations -- 6.1. The determinations of sin2 (Sk(B eff -- 6.2. Extraction of neutral current couplings -- 7. Summary and Outlook -- References -- 10. The W Boson Mass Measurement -- 1. Introduction -- 2. History of the W Mass Measurement -- 3. Theoretical Considerations of MW -- 4. Tevatron MW Measurements from Run 2 -- 5. Techniques for MW Measurement at Hadron Colliders -- 5.1. Lepton momentum and energy calibration -- 5.2. Hadronic recoil simulation -- 5.3. Backgrounds -- 5.4. Production and decay model -- 5.5. Results -- 6. Summary and Conclusions -- Acknowledgments -- References -- 11. Top Quark Mass -- 1. A Brief History of the Top Quark -- 2. The Short Life of a Top Quark; 3. Conventional Top Quark Mass Measurements at Hadron Colliders -- 3.1. World average anno 2014 -- 3.2. New results in mMCt measurements since 2014 -- 3.3. Prospects for mMC -- 3.4. Extraction of mMCt with different observables -- 4. Top Mass Extraction Using Other Top Mass Definitions -- 5. Top Mass Prospects at Lepton Colliders -- 6. Summary and Outlook -- References -- 12. Global Fits of the Electroweak Standard Theory: Past, Present and Future -- 1. Introduction -- 2. Ingredients of Electroweak Fits -- 2.1. Experimental measurements -- 2.2. Theoretical predictions -- 3. Important Milestones of the Electroweak Fit -- 4. Current Status After the Higgs Discovery -- 5. Constraints on Physics Beyond the ST -- 6. Perspectives of the Electroweak Fit -- 7. Conclusion -- References -- 13. Production of Electroweak Bosons at Hadron Colliders: Theoretical Aspects -- 1. Introduction -- 2. QCD Aspects of Inclusive Vector Boson Production -- 2.1. Rapidity spectrum of W and Z bosons -- 2.1.1. W charge asymmetries -- 2.1.2. Z rapidity spectrum and lepton charge asymmetries -- 2.2. Transverse momentum spectrum -- 2.3. Off-shell gauge-boson production at large invariant mass -- 3. Multiple Production of Vector Bosons -- 4. Associated Production of Vector Bosons with Jets and Heavy Quarks -- 4.1. W+charm quarks -- 4.2. V + Q�Q, with Q = c, b -- 4.3. V + tt� -- 5. Conclusions -- References -- 14. A Historical Profile of the Higgs Boson -- 1. Introduction -- 2. Prehistory -- 3. And Then There Was Higgs -- 4. A Phenomenological Profile of the Higgs Boson -- 5. Searches for the Higgs Boson at LEP -- 6. Searches for the Higgs Boson at Hadron Colliders -- 7. Is It Really a/the Higgs Boson? -- 8. More Higgs, Less Higgs? More than Higgs? -- 9. Apres Higgs -- Acknowledgements -- References -- 15. The Higgs Boson Search and Discovery -- 1. Overview; 2. Higgs Searches at the Tevatron -- 2.1. Low mass Higgs boson searches -- 2.2. High mass Higgs boson searches -- 3. Higgs Searches at the LHC -- 3.1. Searches for H → (Sdd(B -- 3.2. Searches for H → ZZ(∗) → llll -- 3.3. Searches in H → W+W− → +(Sp(B −� -- 3.4. Searches in H → (Sx(B+(Sx−(B and in H → b�b -- 4. The Discovery of the Higgs Boson -- 4.1. ATLAS and CMS discoveries -- 4.2. Tevatron combined results -- 5. Conclusion and Prospects -- References -- 16. Higgs Boson Properties -- 1. Introduction -- 2. Overview of Analyses Used -- 2.1. Rare decays -- 2.2. BSM decays -- 3. Measurements -- 3.1. Mass -- 3.2. Total width -- 3.3. Differential and fiducial cross-sections -- 4. Searches for Deviations -- 4.1. Compatibility in decay kinematics -- 4.1.1. Hypothesis tests on the spin of the new boson -- 4.1.2. Kinematic decay structure of a J = 0 boson -- 4.2. Compatibility in signal yields -- 4.3. Compatibility in couplings -- 5. Summary -- References -- 17. Flavour Physics and Implication for New Phenomena -- 1. Introduction -- 2. Some Historical Remarks -- 3. The Flavour Sector of the Standard Theory -- 3.1. The CKM matrix -- 4. The Flavour Problem -- 5. The Minimal Flavour Violation Hypothesis -- 6. Flavour Symmetry Breaking Beyond MFV -- 7. Flavor Physics and Partial Compositeness -- 8. Dynamical Yukawa Couplings -- 9. Conclusions -- References -- 18. Rare Decays Probing Physics Beyond the Standard Theory -- 1. Historical Role of Rare Decays -- 2. Flavour Structure and Symmetries in the ST -- 3. Quark Flavour Changing Neutral Decays -- 3.1. K+ → (Ss(B+(Spp(B, K0L→ (Ss(B0(Spp(B -- 3.2. B0d→ K∗0(So(B+(So−(B -- 3.3. B0(d,s)→ (So(B+(So−(B -- 4. Lepton Flavour Changing Neutral Currents -- 5. Final Remarks -- Acknowledgments -- References -- 19. Neutrino Masses and Flavor Oscillations -- 1. Neutrinos and Their Sources -- 1.1. From Pauli's hypothesis to the discoveries of neutrinos; 1.2. Where do neutrinos come from? UR - https://ebookcentral.proquest.com/lib/ostimteknik/detail.action?docID=6383194 ER -