Demystifying Climate Models : A Users Guide to Earth System Models.

Yazar:Gettelman, Andrew
Katkıda bulunan(lar):Rood, Richard B
Materyal türü: KonuKonuSeri kaydı: Yayıncı: Berlin, Heidelberg : Springer Berlin / Heidelberg, 2016Telif hakkı tarihi: �2016Tanım: 1 online resource (282 pages)İçerik türü:text Ortam türü:computer Taşıyıcı türü: online resourceISBN: 9783662489598Tür/Form:Electronic books.Ek fiziksel biçimler:Print version:: Demystifying Climate ModelsDDC sınıflandırma: 551.6011 LOC classification: TA1-2040Çevrimiçi kaynaklar: Click to View
İçindekiler:
Intro -- Acknowledgments -- Contents -- About the Authors -- Introduction -- Part I Basic Principles and the Problem of Climate Forecasts -- 1 Key Concepts in Climate Modeling -- 1.1 What Is Climate? -- 1.2 What Is a Model? -- 1.3 Uncertainty -- 1.3.1 Model Uncertainty -- 1.3.2 Scenario Uncertainty -- 1.3.3 Initial Condition Uncertainty -- 1.3.4 Total Uncertainty -- 1.4 Summary -- 2 Components of the Climate System -- 2.1 Components of the Earth System -- 2.1.1 The Atmosphere -- 2.1.2 The Ocean and Sea Ice -- 2.1.3 Terrestrial Systems -- 2.2 Timescales and Interactions -- 2.3 Summary -- 3 Climate Change and Global Warming -- 3.1 Coupling of the Pieces -- 3.2 Forcing the Climate System -- 3.3 Climate History -- 3.4 Understanding Where the Energy Goes -- 3.5 Summary -- 4 Essence of a Climate Model -- 4.1 Scientific Principles in Climate Models -- 4.2 Basic Formulation and Constraints -- 4.2.1 Finite Pieces -- 4.2.2 Processes -- 4.2.3 Marching Forward in Time -- 4.2.4 Examples of Finite Element Models -- 4.3 Coupled Models -- 4.4 A Brief History of Climate Models -- 4.5 Computational Aspects of Climate Modeling -- 4.5.1 The Computer Program -- 4.5.2 Running a Model -- 4.6 Summary -- Part II Model Mechanics -- 5 Simulating the Atmosphere -- 5.1 Role of the Atmosphere in Climate -- 5.2 Types of Atmospheric Models -- 5.3 General Circulation -- 5.4 Parts of an Atmosphere Model -- 5.4.1 Clouds -- 5.4.2 Radiative Energy -- 5.4.3 Chemistry -- 5.5 Weather Models Versus Climate Models -- 5.6 Challenges for Atmospheric Models -- 5.6.1 Uncertain and Unknown Processes -- 5.6.2 Scales -- 5.6.3 Feedbacks -- 5.6.4 Cloud Feedback -- 5.7 Applications: Impacts of Tropical Cyclones -- 5.8 Summary -- 6 Simulating the Ocean and Sea Ice -- 6.1 Understanding the Ocean -- 6.1.1 Structure of the Ocean -- 6.1.2 Forcing of the Ocean -- 6.2 "Limited" Ocean Models.
6.3 Ocean General Circulation Models -- 6.3.1 Topography and Grids -- 6.3.2 Deep Ocean -- 6.3.3 Eddies in the Ocean -- 6.3.4 Surface Ocean -- 6.3.5 Structure of an Ocean Model -- 6.3.6 Ocean Versus Atmosphere Models -- 6.4 Sea-Ice Modeling -- 6.5 The Ocean Carbon Cycle -- 6.6 Challenges -- 6.6.1 Challenges in Ocean Modeling -- 6.6.2 Challenges in Sea Ice Modeling -- 6.7 Applications: Sea-Level Rise, Norfolk, Virginia -- 6.8 Summary -- 7 Simulating Terrestrial Systems -- 7.1 Role of the Land Surface in Climate -- 7.1.1 Precipitation and the Water Cycle -- 7.1.2 Vegetation -- 7.1.3 Ice and Snow -- 7.1.4 Human Impacts -- 7.2 Building a Land Surface Simulation -- 7.2.1 Evolution of a Terrestrial System Model -- 7.2.2 Biogeophysics: Surface Fluxes and Heat -- 7.2.3 Biogeophysics: Hydrology -- 7.2.4 Ecosystem Dynamics (Vegetation and Land Cover/Use Change) -- 7.2.5 Summary: Structure of a Land Model -- 7.3 Biogeochemistry: Carbon and Other Nutrient Cycles -- 7.4 Land-Atmosphere Interactions -- 7.5 Land Ice -- 7.6 Humans -- 7.7 Integrated Assessment Models -- 7.8 Challenges in Terrestrial System Modeling -- 7.8.1 Ice Sheet Modeling -- 7.8.2 Surface Albedo Feedback -- 7.8.3 Carbon Feedback -- 7.9 Applications: Wolf and Moose Ecosystem, Isle Royale National Park -- 7.10 Summary -- 8 Bringing the System Together: Coupling and Complexity -- 8.1 Types of Coupled Models -- 8.1.1 Regional Models -- 8.1.2 Statistical Models and Downscaling -- 8.1.3 Integrated Assessment Models -- 8.2 Coupling Models Together: Common Threads -- 8.3 Key Interactions in Climate Models -- 8.3.1 Intermixing of the Feedback Loops -- 8.3.2 Water Feedbacks -- 8.3.3 Albedo Feedbacks -- 8.3.4 Ocean Feedbacks -- 8.3.5 Sea-Level Change -- 8.4 Coupled Modes of Climate Variability -- 8.4.1 Tropical Cyclones -- 8.4.2 Monsoons -- 8.4.3 El Ni�no -- 8.4.4 Precipitation and the Land Surface.
8.4.5 Carbon Cycle and Climate -- 8.5 Challenges -- 8.6 Applications: Integrated Assessment of Water Resources -- 8.7 Summary -- Part III Using Models -- 9 Model Evaluation -- 9.1 Evaluation Versus Validation -- 9.1.1 Evaluation and Missing Information -- 9.1.2 Observations -- 9.1.3 Model Improvement -- 9.2 Climate Model Evaluation -- 9.2.1 Types of Comparisons -- 9.2.2 Model Simulations -- 9.2.3 Using Model Evaluation to Guide Further Observations -- 9.3 Predicting the Future: Forecasts Versus Projections -- 9.3.1 Forecasts -- 9.3.2 Projections -- 9.4 Applications of Climate Model Evaluation: Ozone Assessment -- 9.5 Summary -- 10 Predictability -- 10.1 Knowledge and Key Uncertainties -- 10.1.1 Physics of the System -- 10.1.2 Variability -- 10.1.3 Sensitivity to Changes -- 10.2 Types of Uncertainty and Timescales -- 10.2.1 Predicting the Near Term: Initial Condition Uncertainty -- 10.2.2 Predicting the Next 30-50 Years: Scenario Uncertainty -- 10.2.3 Predicting the Long Term: Model Uncertainty Versus Scenario Uncertainty -- 10.3 Ensembles: Multiple Models and Simulations -- 10.4 Applications: Developing and Using Scenarios -- 10.5 Summary -- 11 Results of Current Models -- 11.1 Organization of Climate Model Results -- 11.2 Prediction and Uncertainty -- 11.2.1 Goals of Prediction -- 11.2.2 Uncertainty -- 11.2.3 Why Models? -- 11.3 What Is the Confidence in Predictions? -- 11.3.1 Confident Predictions -- 11.3.1.1 Temperature -- 11.3.1.2 Precipitation -- 11.3.2 Uncertain Predictions: Where to Be Cautious -- 11.3.3 Bad Predictions -- 11.3.4 How Do We Predict Extreme Events? -- 11.4 Climate Impacts and Extremes -- 11.4.1 Tropical Cyclones -- 11.4.2 Stream Flow and Extreme Events -- 11.4.3 Electricity Demand and Extreme Events -- 11.5 Application: Climate Model Impacts in Colorado -- 11.6 Summary.
12 Usability of Climate Model Projections by Practitioners -- 12.1 Knowledge Systems -- 12.2 Interpretation and Translation -- 12.2.1 Barriers to the Use of Climate Model Projections -- 12.2.2 Downscaled Datasets -- 12.2.3 Climate Assessments -- 12.2.4 Expert Analysis -- 12.3 Uncertainty -- 12.3.1 Ensembles -- 12.3.2 Uncertainty in Assessment Reports -- 12.4 Framing Uncertainty -- 12.5 Summary -- 13 Summary and Final Thoughts -- 13.1 What Is Climate? -- 13.2 Key Features of a Climate Model -- 13.3 Components of the Climate System -- 13.3.1 The Atmosphere -- 13.3.2 The Ocean -- 13.3.3 Terrestrial Systems -- 13.3.4 Coupled Components -- 13.4 Evaluation and Uncertainty -- 13.4.1 Evaluation -- 13.4.2 Uncertainty -- 13.5 What We Know (and Do not Know) -- 13.6 The Future of Climate Modeling -- 13.6.1 Increasing Resolution -- 13.6.2 New and Improved Processes -- 13.6.3 Challenges -- 13.7 Final Thoughts -- Climate Modeling Text Glossary -- Index.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
    Ortalama derecelendirme: 0.0 (0 oy)
Bu kayda ilişkin materyal yok

Intro -- Acknowledgments -- Contents -- About the Authors -- Introduction -- Part I Basic Principles and the Problem of Climate Forecasts -- 1 Key Concepts in Climate Modeling -- 1.1 What Is Climate? -- 1.2 What Is a Model? -- 1.3 Uncertainty -- 1.3.1 Model Uncertainty -- 1.3.2 Scenario Uncertainty -- 1.3.3 Initial Condition Uncertainty -- 1.3.4 Total Uncertainty -- 1.4 Summary -- 2 Components of the Climate System -- 2.1 Components of the Earth System -- 2.1.1 The Atmosphere -- 2.1.2 The Ocean and Sea Ice -- 2.1.3 Terrestrial Systems -- 2.2 Timescales and Interactions -- 2.3 Summary -- 3 Climate Change and Global Warming -- 3.1 Coupling of the Pieces -- 3.2 Forcing the Climate System -- 3.3 Climate History -- 3.4 Understanding Where the Energy Goes -- 3.5 Summary -- 4 Essence of a Climate Model -- 4.1 Scientific Principles in Climate Models -- 4.2 Basic Formulation and Constraints -- 4.2.1 Finite Pieces -- 4.2.2 Processes -- 4.2.3 Marching Forward in Time -- 4.2.4 Examples of Finite Element Models -- 4.3 Coupled Models -- 4.4 A Brief History of Climate Models -- 4.5 Computational Aspects of Climate Modeling -- 4.5.1 The Computer Program -- 4.5.2 Running a Model -- 4.6 Summary -- Part II Model Mechanics -- 5 Simulating the Atmosphere -- 5.1 Role of the Atmosphere in Climate -- 5.2 Types of Atmospheric Models -- 5.3 General Circulation -- 5.4 Parts of an Atmosphere Model -- 5.4.1 Clouds -- 5.4.2 Radiative Energy -- 5.4.3 Chemistry -- 5.5 Weather Models Versus Climate Models -- 5.6 Challenges for Atmospheric Models -- 5.6.1 Uncertain and Unknown Processes -- 5.6.2 Scales -- 5.6.3 Feedbacks -- 5.6.4 Cloud Feedback -- 5.7 Applications: Impacts of Tropical Cyclones -- 5.8 Summary -- 6 Simulating the Ocean and Sea Ice -- 6.1 Understanding the Ocean -- 6.1.1 Structure of the Ocean -- 6.1.2 Forcing of the Ocean -- 6.2 "Limited" Ocean Models.

6.3 Ocean General Circulation Models -- 6.3.1 Topography and Grids -- 6.3.2 Deep Ocean -- 6.3.3 Eddies in the Ocean -- 6.3.4 Surface Ocean -- 6.3.5 Structure of an Ocean Model -- 6.3.6 Ocean Versus Atmosphere Models -- 6.4 Sea-Ice Modeling -- 6.5 The Ocean Carbon Cycle -- 6.6 Challenges -- 6.6.1 Challenges in Ocean Modeling -- 6.6.2 Challenges in Sea Ice Modeling -- 6.7 Applications: Sea-Level Rise, Norfolk, Virginia -- 6.8 Summary -- 7 Simulating Terrestrial Systems -- 7.1 Role of the Land Surface in Climate -- 7.1.1 Precipitation and the Water Cycle -- 7.1.2 Vegetation -- 7.1.3 Ice and Snow -- 7.1.4 Human Impacts -- 7.2 Building a Land Surface Simulation -- 7.2.1 Evolution of a Terrestrial System Model -- 7.2.2 Biogeophysics: Surface Fluxes and Heat -- 7.2.3 Biogeophysics: Hydrology -- 7.2.4 Ecosystem Dynamics (Vegetation and Land Cover/Use Change) -- 7.2.5 Summary: Structure of a Land Model -- 7.3 Biogeochemistry: Carbon and Other Nutrient Cycles -- 7.4 Land-Atmosphere Interactions -- 7.5 Land Ice -- 7.6 Humans -- 7.7 Integrated Assessment Models -- 7.8 Challenges in Terrestrial System Modeling -- 7.8.1 Ice Sheet Modeling -- 7.8.2 Surface Albedo Feedback -- 7.8.3 Carbon Feedback -- 7.9 Applications: Wolf and Moose Ecosystem, Isle Royale National Park -- 7.10 Summary -- 8 Bringing the System Together: Coupling and Complexity -- 8.1 Types of Coupled Models -- 8.1.1 Regional Models -- 8.1.2 Statistical Models and Downscaling -- 8.1.3 Integrated Assessment Models -- 8.2 Coupling Models Together: Common Threads -- 8.3 Key Interactions in Climate Models -- 8.3.1 Intermixing of the Feedback Loops -- 8.3.2 Water Feedbacks -- 8.3.3 Albedo Feedbacks -- 8.3.4 Ocean Feedbacks -- 8.3.5 Sea-Level Change -- 8.4 Coupled Modes of Climate Variability -- 8.4.1 Tropical Cyclones -- 8.4.2 Monsoons -- 8.4.3 El Ni�no -- 8.4.4 Precipitation and the Land Surface.

8.4.5 Carbon Cycle and Climate -- 8.5 Challenges -- 8.6 Applications: Integrated Assessment of Water Resources -- 8.7 Summary -- Part III Using Models -- 9 Model Evaluation -- 9.1 Evaluation Versus Validation -- 9.1.1 Evaluation and Missing Information -- 9.1.2 Observations -- 9.1.3 Model Improvement -- 9.2 Climate Model Evaluation -- 9.2.1 Types of Comparisons -- 9.2.2 Model Simulations -- 9.2.3 Using Model Evaluation to Guide Further Observations -- 9.3 Predicting the Future: Forecasts Versus Projections -- 9.3.1 Forecasts -- 9.3.2 Projections -- 9.4 Applications of Climate Model Evaluation: Ozone Assessment -- 9.5 Summary -- 10 Predictability -- 10.1 Knowledge and Key Uncertainties -- 10.1.1 Physics of the System -- 10.1.2 Variability -- 10.1.3 Sensitivity to Changes -- 10.2 Types of Uncertainty and Timescales -- 10.2.1 Predicting the Near Term: Initial Condition Uncertainty -- 10.2.2 Predicting the Next 30-50 Years: Scenario Uncertainty -- 10.2.3 Predicting the Long Term: Model Uncertainty Versus Scenario Uncertainty -- 10.3 Ensembles: Multiple Models and Simulations -- 10.4 Applications: Developing and Using Scenarios -- 10.5 Summary -- 11 Results of Current Models -- 11.1 Organization of Climate Model Results -- 11.2 Prediction and Uncertainty -- 11.2.1 Goals of Prediction -- 11.2.2 Uncertainty -- 11.2.3 Why Models? -- 11.3 What Is the Confidence in Predictions? -- 11.3.1 Confident Predictions -- 11.3.1.1 Temperature -- 11.3.1.2 Precipitation -- 11.3.2 Uncertain Predictions: Where to Be Cautious -- 11.3.3 Bad Predictions -- 11.3.4 How Do We Predict Extreme Events? -- 11.4 Climate Impacts and Extremes -- 11.4.1 Tropical Cyclones -- 11.4.2 Stream Flow and Extreme Events -- 11.4.3 Electricity Demand and Extreme Events -- 11.5 Application: Climate Model Impacts in Colorado -- 11.6 Summary.

12 Usability of Climate Model Projections by Practitioners -- 12.1 Knowledge Systems -- 12.2 Interpretation and Translation -- 12.2.1 Barriers to the Use of Climate Model Projections -- 12.2.2 Downscaled Datasets -- 12.2.3 Climate Assessments -- 12.2.4 Expert Analysis -- 12.3 Uncertainty -- 12.3.1 Ensembles -- 12.3.2 Uncertainty in Assessment Reports -- 12.4 Framing Uncertainty -- 12.5 Summary -- 13 Summary and Final Thoughts -- 13.1 What Is Climate? -- 13.2 Key Features of a Climate Model -- 13.3 Components of the Climate System -- 13.3.1 The Atmosphere -- 13.3.2 The Ocean -- 13.3.3 Terrestrial Systems -- 13.3.4 Coupled Components -- 13.4 Evaluation and Uncertainty -- 13.4.1 Evaluation -- 13.4.2 Uncertainty -- 13.5 What We Know (and Do not Know) -- 13.6 The Future of Climate Modeling -- 13.6.1 Increasing Resolution -- 13.6.2 New and Improved Processes -- 13.6.3 Challenges -- 13.7 Final Thoughts -- Climate Modeling Text Glossary -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

yorum yazmak için.

Ziyaretçi Sayısı

Destekleyen Koha